P N

BB EHRENMENRSEALFAL 2018
EHENBEBREEELRTARNA

Knot Optimization for Biharmonic B-splines on Manifold Triangle Meshes
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Figure 1: Comparing biharmonic B-splines with LS-meshes in terms of approximation error and runtime performance. Biharmonic B-splines determine the knots by L,
optimization, whereas LS-meshes choose the control vertices by greedy selection combined with local error maxima. With the same number of knots and control vertices,
biharmonic B-splines consistently outperform LS-meshes in terms of approximation error. However, LS-meshes are 2 to 5 times faster to construct than biharmonic B-splines.
We visualize the fitting errors using colors, where warm colors indicate large error and cold colors small error.

Biharmonic B-splines, proposed by Feng and Warren [1], are one
such novel advancement, that extends univariate B-splines to planar
and curved domains. In [2], the key observation Is that the discrete
bi-Laplacian i1s a well-behaved analog of divided differences. The
flexibility of biharmonic B-splines comes with a high price: (1) The
need of Voronol tessellation Is unavoidable; (2) The computation of
the distance function is lacking an analytical formulation on general
surfaces; (3) The bases must be re-evaluated wherever domain re-
configuration is carried out during knot refinement and coarsening;
and (4) Bi-Laplacian operators are well defined on simple domains.

To combat the aforementioned difficulties, the overarching goal of
this paper Is to expand the horizon of biharmonic B-splines at both
theoretic and practical fronts. We promote the use of biharmonic B-
splines through a novel, yet simpler, and equivalent mplicit
formulation. Rather than the conventional explicit formulation. The
proposed implicit representation naturally and elegantly brings forth
two fundamental properties, which otherwise cannot be easily
derived In the explicit representation. We develop a new
computational framework for constructing biharmonic B-splines on

triangular meshes. Our framework consists of algorithms for spline
data

evaluation, optimal knot selection, and

hierarchical data decomposition.
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Figure 2. Evaluating the splines using planar subdivision and other
subdivision schemes. Only planar subdivision produces correct results. With
Loop subdivision and butterfly subdivision, the subdivided mesh M’ has
different geometry than the domain mesh M. Thus, the value f (x) makes no
sense for a point x € M. The red curves are the images of the edges of M.
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Figure 3. Hierarchical data decomposition.

Figure 4. Fitting vector-valued data (i.e., rgb color) defined on a genus-8 model. Top: the
Input data and the knots. The percentage shows the knot vertex ratio. Bottom: the
reconstructed data.
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Figure 5. Thanks to Its parameterization-and-singularity-free property, biharmonic spline can be easily
defined on 3D surfaces of complicated topology, which are quite difficult for conventional splines. The
percentage shows the knot-vertex ratio.
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