

Visual Analysis of Collective Anomalies Through High-Order Correlation Graph 基于高阶关联图的群体异常可视化分析系统 时磊 黄聪聪 余如雷

Accepted by PacificVis(2018): The 11th IEEE Pacific Visualization Symposiu

联系方式:huangcc@ios.ac.cn

Background

- Anomaly Types
 - a) Point anomaly: e.g., an illegal overwrite of memory
 - b) Contextual anomaly: e.g., high CPU usage in the resting state
 - c) Collective anomaly: e.g., ssh->buffer-overflow-> ftp
- Detection algorithms: collective anomaly is the most challenging -Statistical model-based -Classification-based -Nearest Neighbor-based -Information-theoretic-based
 - -Clustering-based
- -Spectral-based

Building environment measurement

e	······································	FGISUIFIU	FIOXEIG
	"F_1_Z_8A: Thermostat Heating Setpoint": "15.6000",	85	pyoungO
	"F_1_BATH_EXHAUST:Fan Power": "0.0000",	85	pyoungO
	"F_1_Z_8B VAV REHEAT Damper Position": "0.0000",	85	pyoung0
	"F_1_Z_8A REHEAT COIL Power": "0.0000",	85	pyoung0
"F_1_Z_2: Thermostat Heating "F_1_VAV_SYS SUPPLY FAN:Fan "F 1 Z 2 SUPPLY INLET Temper	"F_1_Z_2: Thermostat Heating Setpoint": "15.6000",	85	ονομοσΩ
	1 7 2 SUPPLY INLET Temperature": "24.4533"	85	pyoupa0
	"F 1 Z 8A RETURN OUTLET CO2 Concentration": "287.5286"	85	pyoungo
	"F_1_Z_1 SUPPLY INLET Temperature": "24.4533",	00	pyoungo
	"F_1_Z_8A: Thermostat Temp": "25.0116", "F_1_Z_7 RETURN OUTLET CO2 Concentration": "823.2590" "F_1_VAV_SYS HEATING COIL Power": "0.0000",	00	
		85	pyoungu -
		85	pyoung0

Employ mobility measurement

	Person-Id	Prox-Id	Prox-Zone	Second of Timestamp
	85	pyoung001	floor 2 prox zone 4	6/2/2016 10:20:49 AM
	85	pyoung001	floor 3 prox zone 4	6/2/2016 10:21:31 AM
	85	pyoung001	floor 3 prox zone 1	6/2/2016 10:21:33 AM
	85	pyoung001	floor 3 prox zone 3	6/2/2016 10:21:50 AM
	85	pyoung001	floor 3 prox Server Room	6/2/2016 10:22:00 AM
	85	pyoung001	floor 3 prox zone 3	6/2/2016 10:25:01 AM
6"	85	pyoung001	floor 3 prox zone 1	6/2/2016 10:25:12 AM
	85	pyoung001	floor 3 prox zone 4	6/2/2016 10:25:29 AM
۳,	85	pyoung001	floor 2 prox zone 4	6/2/2016 10:26:11 AM
ĺ	85	pyoung001	floor 2 prox zone 1	6/2/2016 10:26:13 AM
	85	pyoung001	floor 2 prox zone 2	6/2/2016 10:26:33 AM

Two datasets

Research Problem

Design a visual analytics technique for detecting the ulletcollective anomaly on a group of interrelated objects from their observed behaviors

Case Study: Facility Monitoring

Case Study: Software Crash Analysis

Conclusion

Visual Abstraction

- Filtering of HOCG
 - -Selection of events based on time and anomaly/correlation threshold
 - –Augment HOCG to include highly related events to the selected ones
- Object-centric abstraction
 - -Aggregate events belonging to the same object into one group node
 - -Aggregate event-level correlations to object-level correlations

- We propose the concept of high-order correlation graph
 - -Generality: detect correlations among objects with heterogeneous data types, incorporate domain knowledge
 - -Scalability: support to scale to huge number of objects, dimensions, and events
 - –Interactivity: customize the HOCG for flexibly analysis anomaly
- We design a visualization interface to explore HOCG for • collective anomaly detection -Wedge-based visual metaphor -HOCG view, event view, detail view