

 随着Android设备的流行和普及，Android系统碎片化越发严重。由于缺少足够的设备，

应用难以在大量不同类型的设备上进行测试。同时，现有兼容性检测方法由于缺少应用特

定的领域知识。无法生成有效的用户输入，导致测试覆盖率不高。 AppCheck是一种基于

录制/重放的Android应用众包测试工具，可通过PC或手机浏览器收集众包用户和设备交

互时所产生的事件序列，并将收集到的事件序列转换成平台无关的测试脚本，该脚本可直

接在众包用户的设备上进行重放。并在重放期间收集各种测试相关数据（例如，截图和布

局信息）以检测兼容性问题。

AppCheck: Android应用兼容性问题检测工具

兼容性问题检测

曹羽中,吴国全 魏峻,黄涛

软件工程技术研发中心

{caoyuzhong14, gqwu,wj,tao}@otcaix.iscas.ac.cn

总体流程

实验结果

方法步骤

Step1:用户操作序列收集 Step2:用户行为抽象 Step3:跨设备重放

AppCheck可以成功的录制重放100个流行移动应用中的87个应用，可有效检测出8个兼容性问题中的6个

2018

Step4:兼容性问题检测

Back-end server

UIAutomator

Event capture

Mini-touch lib.

Inputs
Test Case
Recording

Recorded

Trace

Test Case
Generation Test Case

Test Case
Execution Test Report

Figure 4: H igh-leveloverview of the technique.

3. T E C H N IQ U E
In this section, w e present our technique for recording, genera-

ting, and executing test cases for A ndroid apps. Figure 4 provi-
des a high-leveloverview of our technique,w hich consists of three
m ain phases. In the test case recording phase, the user interacts
w ith the A U T w ith the goal of testing its functionality. O ur tech-
nique records user interactions and offers a convenient interface to
define assertion-based oracles. W hen the user signals the end of
the recording phase, the technique enters its test case generation
phase, w hich translates recorded interactions and oracles into test
cases thatare (as m uch as possible) device independent. Finally,in
the testcase execution phase,our technique executes the generated
test cases on m ultiple devices and sum m arizes the test results in
a report. In the rem ainder of this section, w e describe these three
phases in detailand dem onstrate them on our m otivating exam ple.

3.1 T est C ase R ecording
In the test case recording phase, the user records test cases by

exercising the functionality of an app. T his phase receives the
package nam e of the A U T as input. To record the divide by zero
test case of Section 2, for instance, the user w ould indicate c o m .

c a l c u l a t o r as inputof this phase.
B ased on the package nam e provided, the technique launches

the app’s m ain activity [17] and,atthe sam e tim e,creates a m enu.
T he m enu is displayed as a floating m enu above the A U T and is
m ovable,so thatitdoes notinterfere w ith the user interaction w ith
the app. T he elem ents in the m enu allow the user to (1) define
assertion-based oracles,(2)use system buttons (i.e.,back and hom e
buttons),and (3) stop the recording.

A s soon as the app is launched, and the m enu is visible to the
user,a second com ponent starts operating: the recorder.T his com -
ponent, w hich is the core com ponent of the test case recording
phase, is used to (1) access the U I displayed by the A U T,(2) pro-
cess user interactions, and (3) assist the oracle definition process.
T he recorder leverages the accessibility functionality provided by
the A ndroid platform to register for certain kinds of events and be
notified w hen such events occur. T he recorder uses these accessi-
bility capabilities to listen to tw o categories of events: events that
describe a change in the U Iand events thatare fired as consequence
of user interactions. E vents in the form er category are used to cre-
ate a reference that uniquely identifies an elem ent in the app’s U I.
W e call this reference the selector of the elem ent. E vents in the
latter category, instead, are logged in the recorded trace. Specifi-
cally, the recorder (1) stores the type of interaction, (2) identifies
the U Ielem entaffected by the interaction and defines a selector for
it,and (3) collects relevantproperties of the interaction. T he recor-
der processes oracles in a sim ilar fashion: it (1) stores the type of
oracle,(2) identifies the U I elem ent associated w ith the oracle and
defines a selector for it,and (3) saves the details of the oracle (e.g.,
an expected value for a field). T hese interactions and user defined
oracles are logged by the recorder in a recorded trace in the form
of actions. W hen the user stops the recorder,our technique passes
the contentof the recorded trace to the testcase generation phase.

In the rest of this section, w e discuss the inform ation collected
in the recorded trace, describe how the recorder defines selectors,

tr a ce-d ef ::= trace m a in -a ctiv ity a ction s
m a in -a ctiv ity ::= str in g
a ction s ::= a ction | a ction , a ction s
a ction ::= in ter a ction -d ef | a sser tion -d ef | k ey -d ef
in ter a ction -d ef ::= interaction i-ty p e selecto r tim esta m p i-p r op s
i-ty p e ::= click | long click | type | select| scroll
selector ::= r esou rce-id | x p a th | p r op er ties-ba sed
r eso u rce-id ::= str in g
x p a th ::= str in g
p ro p er ties-ba sed ::= elem en t-cla ss elem en t-tex t
elem en t-cla ss := str in g
elem en t-tex t := str in g
tim esta m p ::= n u m ber
i-p r op s ::= | ex p r s
a sser tion -d ef ::= assertion a -ty p e selector tim esta m p a -p r op s
a -ty p e ::= checked | clickable | displayed | enabled | focus

| focusable | text| child | parent| sibling
a -p r op s ::= | selecto r | ex p r s
k ey -d ef ::= key k ey -ty p e tim esta m p
k ey -ty p e ::= action | close
ex p r s ::= ex p r | ex p r, ex p rs
ex p r ::= bo o l | n u m ber | str in g

Figure 5: A bstract syntax of the recorded trace.

present w hat type of interactions are recognized by our technique,
and finally describe the oracle creation process.

3.1.1 R ecorded Trace
Figure 5 show s the abstract syntax for a recorded trace. T he

beginning of the trace is defined by the trace-def production rule,
w hich indicates thata trace consists ofthe nam e ofthe m ain activity
follow ed by a list of actions. T he types of actions logged into the
recorded trace is indicated by the action production rule.

3.1.2 Selectors
O ur technique creates a selector for allinteractions and oracles,

w hich is used to accurately identify the U I elem entassociated w ith
these actions and is independent from the screen size of the device
used in this phase. T he technique defines and uses three types of
selectors: (1) the resource ID selector (resou rce-id in Figure 5),
(2) the X Path selector (x path),and (3) the property-based selector
(property-based). T he resource ID selector corresponds to the
A ndroid resource ID that is associated to a U I elem ent [11]; the
X Path [47] selector identifies an elem ent based on its position in
the U I tree (as the U I tree can be m apped to an X M L docum ent);
and the property-based selector identifies an elem entbased on tw o
properties: the class of the elem ent (elem en t-class) and the text
displayed by the elem ent,if any (elem en t-tex t).

O ur technique does not use the A ndroid resource ID as its only
type ofselector for tw o reasons. First,the A ndroid fram ew ork does
not require a developer to specify the resource ID value for a U I
elem ent. In fact,w hile creating a layoutfile of an app,itis possible
to om it the resource ID of U I elem ents declared in it. Second, the
fram ew ork cannotenforce uniqueness of ID s in the U I tree.

In addition,our technique does notuse an elem ent’s screen coor-
dinates as a selectorbecause the A ndroid ecosystem is too fragm en-
ted in term s of screen sizes;the screen coordinates of a U I elem ent
on a given device can considerably differ from the coordinates of
the sam e elem enton a differentdevice.

T he recorder aim s to identify the m ost suitable type of selector
for every interaction and oracle processed by leveraging the acces-
sibility functionality of the A ndroid platform . Itdoes so by analy-
zing the accessibility tree representing the U I displayed on the de-
vice. E ach node in the tree represents an elem ent in the U I and is
characterized by tw o properties of interest: resource ID (ifdefined)
and class of the node (i.e.,the class of the U I elem ent represented

W
eb

 C
lien

t

Trace
User Action

Abstraction

Test Scripts

Compatibility

Issue Detection
Layout

screenshot

layout

exception
Report

Event Trace Collection

cross-platform

replay

Fig.1. O verallFram ew ork of A ppC heck

for click action, the corresponding FSM is defined as d c u
c (expressed in regular expression), w here the tim e elapsed
betw een d and u is less than 500m s.W hen this tim e value is
greater than 500m s,itis identified as long-click.

It is m ore difficult to identify input action, as it is also a
click action, but the difference is that it clicks the keyboard.
To identify input action, for each identified click action,
A ppC heck further checks w hether current focused w idget
(w hose “focused”property is true) is TextEdit by traversing
extracted U Ihierarchy tree.Ifitis true,the action is identified
as input,and corresponding textvalue is extracted and saved
into input value.

B oth scroll and sw ipe action start w ith (d c),follow ed by
m ultiple (m c) and ends up w ith (u c), but the difference is
thatscrollaction w orks on a scrollable w idget.To distinguish
scroll and sw ipe action, A ppC heck w ill determ ine w hether
there is a scrollable w idget (property “scrollable”is true)
w hen determ ining X Path inform ation ofw idgetthatthis action
w orks on (described in the selector).If it is true, this action
w ill be identified as scroll.O therw ise, itw ill be identified as
sw ipe.

Selector. Selector is used to accurately identify the U I
w idget that the action w orks on and is independent from the
screen size and resolution of the device. In order to identify
corresponding U I w idget, A ppC heck traverses the logged U I
hierarchy tree until reaching the leaf node that the identified
action w orks on (coordinates ofusertouch events is contained
by the bounding box that represents the leaf node). A fter
traversing,A ppC heck also gets X Path inform ation of the leaf
node,w hich represents the position in the U Ihierarchy tree.It
then tries to retrieve the resource id and textcontent(ifithas),
and along w ith X Path inform ation of this leaf node,they are
used as the selector to unique identify U I w idget associated
w ith the action in the nextstep.

C oordinates and Tim estam p. C oordinates saves the co-
ordinates of the located U I w idget, and for scroll,sw ipe and
zoom actions, the coordinates of captured touch events w ill
also be saved. Tim estam p records the start and end tim e of
each identified action.

C . C ross-platform replay

To replay extracted actions,one possible w ay is to translate
the actions sequence into the testcase w hich can be executed
across different android platform s by existing testing fram e-
w ork (e.g., A ndroid Espresso [2], R obotium [3]). H ow ever,

such approach requires A U T m ust be connected to hosts
firstly,and then run adb com m and to execute testcases across
connected devices. O bviously, it is not appropriate for the
scenario of crow dsourced testing of android apps.

To replay actions retrieved from step 2 in crow dsourced test-
ing environm ent,w e developed a m obile app (called replayer)
leveraging accessibility service already present on A ndroid
platform [4], w hich supports to synthesize a user action
directly on the devices of crow ds w ithout adb connection or
rooting. C row ds just need to install A U T and replayer app
on their devices, enabling accessibility function for replayer
app.A fter itstarts,user selects the app to be tested,replayer
app w ill dow nload corresponding tests scripts from back-
end server, and then run the follow ing step to execute the
abstracted testscripts

For each user action to be replayed, replayer tries to
identify the target U I com ponent that the action w orks on
based on selector.Itfirstchecks resource id.If itis notnull,
A ppC heck tries to invoke findAccessibilityN odeInfosByV iew Id
A PI that accessibility service provides to determ ine w hether
the returned result contains unique U I com ponent. If it is
true, it w ill invoke execute corresponding action. O therw ise,
it further locates the target according to text content by
invoking findAccessibilityN odeInfosByText A PI. If the above
process cannot locate the unique U I com ponent, A ppC heck
w ill invoke getRootInActiveW indow A PI to first get the root
ofthe accessibility tree,and then traverse the accessibility tree
to locate the targetw idget according to X Path inform ation.

A fter locating the target, it then invokes perform Action
A PI that accessibility service provides to perform click/long-
click/input actions. For exam ple, to execute click action,
param eter ACTION_CLICK should be specified in the per-
form Action.To execute inputaction,itinvokes perform Action
w ith param eter ACTION_SET_TEXT to input text value on
the devices w ith A PI level ≥ 21, and for devices w ith
A PI level ≥ 18, it uses C lipboard to paste text content
to input w idget. For scroll action, after locating the scrol-
lable U I w idget, it invokes perform Action w ith param eter
ACTION_SCROLL_FORWARD/BACKWARD according to the
m oving direction of touch-m ove events.

To execute device actions back and hom e,
perform G lobalAction A PI is invoked w ith param eter
GLOBAL_ACTION_BACK and GLOBAL_ACTION_HOME ,
respectively.

4. 解析收集到的兼容性测试相关数据，并生成
兼容性问题检测报告。

1. 通过PC或手机浏览器捕获众包测试参与者与应
用交互的操作序列和各种兼容性测试相关数据

2. 将捕获到的操作序列转化为可在各种类型
Android设备上执行的平台无关的中间脚本语言

3. 在众包测试的环境中自动完成重放，同时
上传各种兼容性测试相关数据。

