An Experimental Evaluation of Garbage Collectors on Big Data Applications

Lijie Xu¹, Tian Guo², Wensheng Dou¹, Wei Wang¹, Jun Wei¹

¹ Institute of Software, Chinese Academy of Sciences ² Worcester Polytechnic Institute
The 45th International Conference on Very Large Data Bases (VLDB 2019), pages 570-583

xulijie@iscas.ac.cn

Introduction

Big data frameworks, such as Hadoop MapReduce and Spark, rely on garbage-collected languages. Big data applications usually process a large volume of data that lead to heavy GC overhead (up to 50% of the application execution time).

Three Key Research Questions

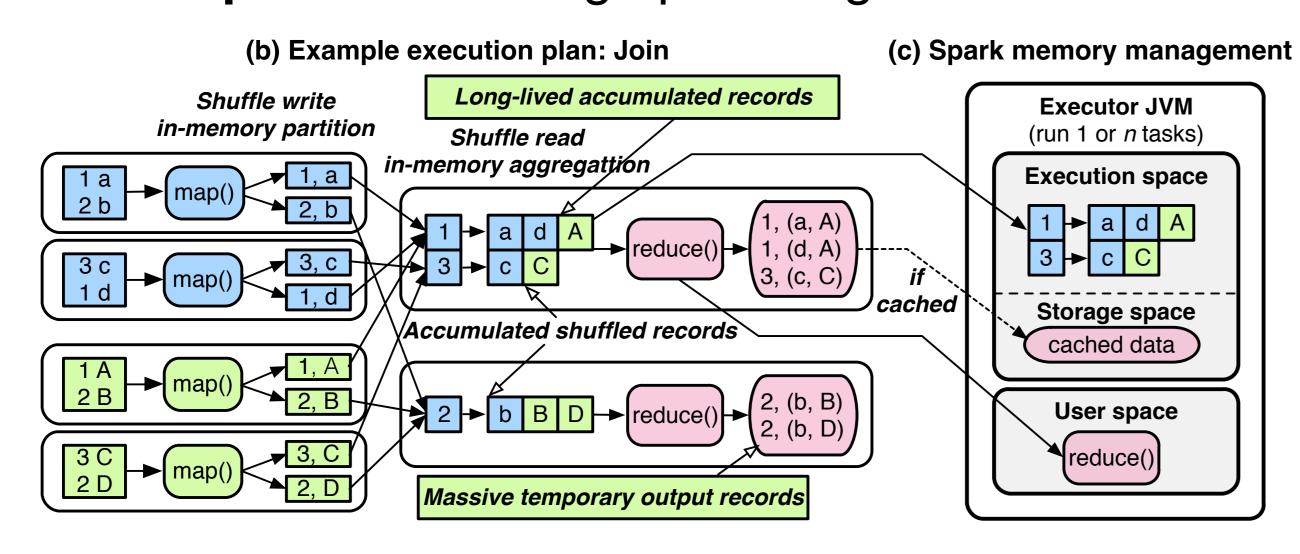
- RQ1: What are the typical memory usage patterns of big data applications?
- RQ2: Are current garbage collectors sufficient for big data applications? If not, why?
- RQ3: What are the guidelines for application developers and insights for designing big-data-friendly garbage collectors?

Background

Spark Memory Management

The memory usage of a Spark application consists of three parts:

- 1. Execution space: for storing shuffled data
- 2. Storage space: for storing cached data
- 3. User space: for storing operator-generated data



Different Garbage Collectors

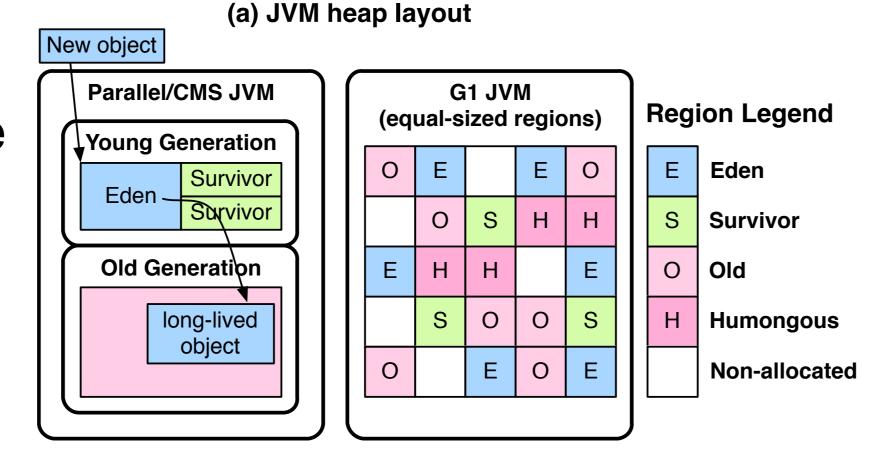
1. Heap Layout Differences:

Garbage collectors divide the heap into two generations: Young generation: for

keeping short-lived objects

Old generation: for keeping

long-lived objects



GC	Heap Layout Differences			
Parallel, CMS	Contiguous generations with an explicit boundary			
G1	Dividing heap space into equal-sized regions			

2. GC Algorithm Differences:

GC	Young GC	Full GC					
Parallel	Mark-copy (STW)	Mark-sweep-compact (STW)					
CMS	Mark-copy (STW)	Concurrent mark-sweep (mostly concurrent, non-compacting)					
G1	Mark-copy (STW)	Concurrent mark + mixed evacuation (mostly concurrent,incremental compact)					
GC Timelines safepoint safepoint safepoint Parallel GC CMS GC Initial Mark Concurrent Mark Concurrent Sweep							
G1 GC							

Concurrent Mark Remark Clean up

Methodology

We summarize the computation features and memory usage patterns of four representative Spark applications:

Application	Type		Application featur	Memory usage patterns	
Application	Type	#Cached data	#Shuffled records	Space complexity	Wiemory usage patterns
GroupBy	SQL None		Medium: $O(N_{rows})$	reduceByKey(sum): O(1)	Accumulated records
Join	SQL	None	Heavy: $O(N_{rows \ of \ R\&U})$	join(): O(m+n)	Accumulated records, Temporary output records
SVM	ML	$O(N_{matrix_rows})$	Light: $O(N_{map_task})$	reduce():O(x)	Humongous data objects, Cached records
PageRank	Graph	$O(N_{edges})$	Medium: $O(N_{edges})$	join(): O(m+n)	Iterative accumulated records, Cached records

SVM dataflow

PageRank dataflow

Experimental datasets

Арр	Data-1.0 (100%)	Data-0.5 (50%)		
GroupBy	200GB Uservisits	50% rows		
Join	200GB Uservisits, 40GB Rankings	50% rows		
SVM	21GB KDD2012 matrix	50% columns		
PageRank	25GB Twitter graph	50% edges		

We perform the four applications on representative datasets with different sizes that can lead to different memory pressures.

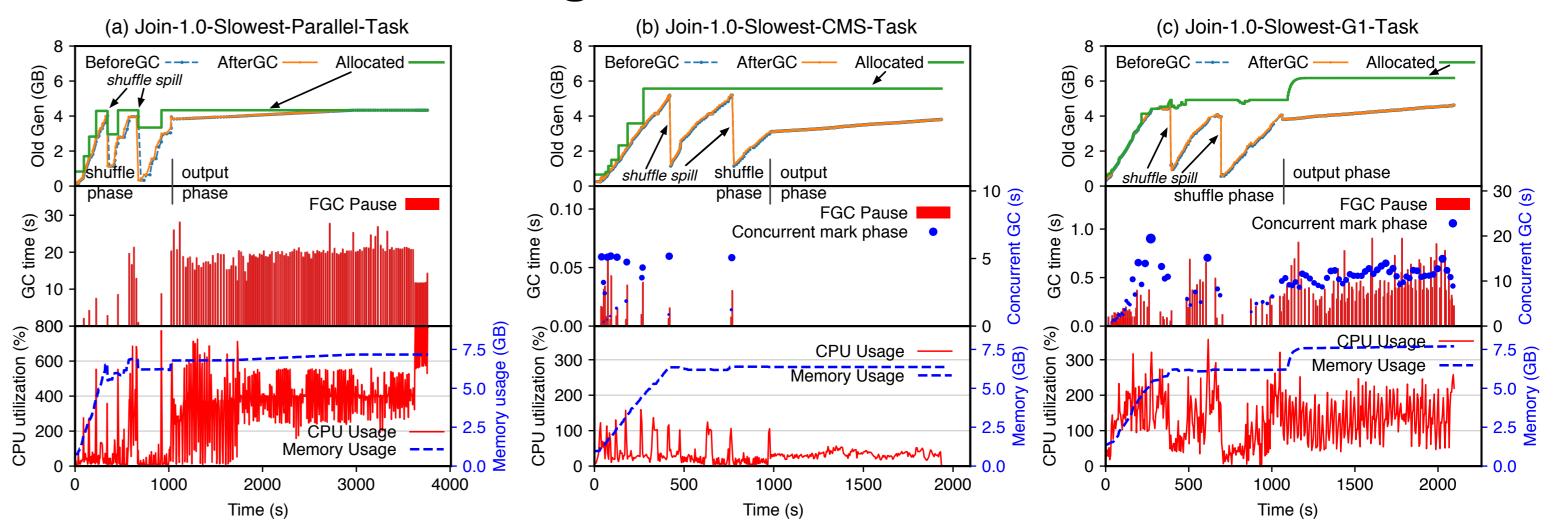
Results

Overall Results and Key Findings

Table 3: The average application execution time comparison with different data sizes. \times (OOM) means that the applications failed with OOM errors.

Application	Data-0.5				Data-1.0			
Application	Parallel	CMS	G1	Comparison	Parallel	CMS	G1	Comparison
GroupBy	$20.4_{(1.1)}$	$18.2_{(0.2)}$	$18.4_{(0.4)}$	C < G1 < P(10.8%)	$45.4_{(19)}$	$36.3_{(0.9)}$	$39.4_{(1.2)}$	C < G1 < P(20.1%)
Join	$31.8_{(5.7)}$	$28.3_{(0.3)}$	$28.4_{(0.8)}$	C < G1 < P(11.3%)	$78.7_{(41)}$	$54.7_{(0.7)}$	$57.1_{(2.6)}$	$C < G1 \ll P(30.5\%)$
SVM	$6.2_{(0.4)}$	$6.0_{(0.3)}$	$6.0_{(0.1)}$	C = G1 < P(3.2%)	$15.2_{(1.2)}$	$14.5_{(1.1)}$	\times (OOM)	C < P(4.6%)
PageRank	$26.1_{(11.3)}$	$19.5_{(3.5)}$	$38.3_{(3.3)}$	$C \ll P \ll G1(49.1\%)$	\times (OOM)	\times (OOM)	\times (OOM)	×

- 1. Big data applications' unique memory usage patterns (e.g., long-lived shuffled data and humongous data objects), and computation features (e.g., iterative computation and CPU-intensive data operators) contribute to the substantial performance differences among garbage collectors.
- 2. The concurrent collectors, such as CMS and G1, can reduce the GC pause time while reclaiming the *long-lived shuffled data*. However, they hinder CPU-intensive data operators due to serious CPU contention.
- 3. All three collectors are inefficient for managing *humongous* data objects, which lead to frequent GC cycles and even OOM errors in non-contiguous collectors like G1.



Proposed Optimizations

- 1. Prediction-based dynamic heap sizing policies.
- 2. Label-based object marking algorithms.
- 3. Overriding-based object reclamation algorithms.