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Bac kg round However, the criteria used to determine which network Is
better as an auxiliary network Is indeed a problem. To
overcome this issue, naturally, we adopt the following

-In Reinforcement Learning (RL) an agent seeks the
optimal policies, for sequential decision problems. And

_ Measures.
at each time step t, the agent observes state S,, takes an
action a, and receive a scalar reward I . -according to the score
e -using the operator of max
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Vammmar networks, Is presented in Algorithm (right).
= | training Algorithm 1 DQN with auxiliary networks
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Repla liest target Q by @ every C
: : f reward in(r_com ) th
enVironment O 18: temp = argmin(r_compare)
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end for

Difficulties Experiment

Some features in DRL (Deep Reinforcement Learning): _ . _
-DQN with auxiliary networks compare with DQN:

nave overestimation phenomena
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Method

This Is the overview (left) of our auxiliary networks for
deep learning approach. Our method, named DQN with

Conclusion

choose several historical best networks as our auxiliary
networks

use the score of each episode as the criteria
demonstrate that the auxiliary networks play an important
role, not the operation of maximizing

auxiliary networks, has these networks:

-multiple target networks
-T latest previous target networks

-K auxiliary networks




