
FlashRegex: Deducing Anti-ReDoS Regexes from Examples
FlashRegex:从示例中推断抗ReDoS的正则表达式

学术论文

Yeting Li, Zhiwu Xu, Jialun Cao, Haiming Chen, Tingjian Ge, Shing-Chi Cheung, Haoren Zhao
The 35th IEEE/ACM International Conference on Automated Software Engineering (ASE 2020)

 Yeting Li, 15801685206, liyt@ios.ac.cn

 Background & Motivation

 Challenges

Conclusion

This motivates the need for techniques that can automatically not only synthesize ReDoS-invulnerable regexes, but also
help repair incorrect and/or ReDoS-vulnerable regexes.

• Regular expressions (regexes) are widely used in different fields of computer science.

• Regexes are hard for users/experts to understand and compose, thus that is why automatic regex synthesis/repair techniques are proposed.

• However, existing works do not consider the issue of ReDoS-vulnerability in regex synthesis/repair.

 Approach
Regex Synthesis.

Summary to RQ1: FlashRegex can synthesize regex efficiently, correctly and safely. The results also confirmed the lack of focus on ReDoS-vulnerability in previous
 works, thus making further repair a necessity.

Summary to RQ2: FlashRegex can repair incorrect regex efficiently, correctly and safely. The efficiency is not affected significantly by negative examples, and the
 regex after repair is free from ReDoS-vulnerability.

Summary to RQ3: FlashRegex can repair ReDoS-vulnerable regex efficiently and correctly. The experiment also indicates the incapability of existing work for
 repairing ReDoS-vulnerable regex.

We propose a PBE framework, FlashRegex, which provides three core functionalities including regex synthesis, incorrect regex repair, and ReDoS-vulnerable regex repair.
Ours is the first framework that integrates the synthesis and repair of regexes with the awareness of ReDoS-vulnerabilities.

 Evaluation
RQ1. Evaluation of regex synthesis.
RQ2. Evaluation of incorrect regex repair.
RQ3. Evaluation of ReDoS-invulnerable regex repair.

Huge search space. Difficulty of prevention of ReDoS-vulnerabilities.

For both regex synthesis and repair, the search space is extremely large because practical regexes:
(i) are large, (ii) operate over very large alphabet size, and (iii)contain various operators.

Difficulty of synthesizing/repairing regexes from examples.

The problem of ReDoS-invulnerable regex synthesis- and repair-from-examples is shown to be an
NP-hard problem.

Instead of avoiding certain patterns of regexes as prerequisites of ReDoS attacks, developers or
users expect to address ReDoS-vulnerability from its root cause---the ambiguity of regexes. Indeed,
ambiguity can lead to catastrophic backtracking that causes ReDoS attacks.

How to avoid generating these ambiguous regexes effectively is a distinct
merit of our work over existing techniques.

Regex Repair.

The effectiveness and efficiency of incorrect regex repair

The effectiveness and efficiency of incorrect regex synthesis

The effectiveness and efficiency of ReDoS-invulnerable regex repair

