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Background & Motivation

* Regular expressions (abbrev. regexes) have been widely used in different fields of computer science due to high effectiveness and accuracy.
* Unfortunately, despite their popularity, regexes can be difficult to understand and compose even for experienced programmers.

* To alleviate this problem, prior research has proposed techniques to automatically generate regexes.

Existing Solutions

NLP-based techniques. - NLP-and-example-based techniques.

The use of advanced NLP-based techniques can reduce the amount of required
(characteristic) examples meanwhile alleviate the amount of effort from users,

* While the use of examples can effectively disambiguate or correct errors in the descriptions.
 There have been recent attempts in this direction, in which they first translated the NL
description into a sketch, then searched the regex space defined by the sketch guided by
the given examples.

However, the forms of translated sketches are restricted. This prevents regexes from being
synthesized correctly when the generated sketches are inappropriate (e.g., logically-incorrect).

* Can only generate regexes similar in shape to the training data. “ :
* Impeded by the ambiguity and imprecision of NL even for stylized English.

Example-based techniques. |

* Rely on high quality examples provided by users.
» The synthesized regexes may be under- or over-fitting. : .

Approach

Observation. ” The Main Algorithm

!! * In the first step, NLP-based regex
synthesis takes the given NL

We observe that most of the incorrect regexes generated by NLP-based techniques are
very similar to the target regexes with subtle differences, and can be made equivalent
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Evaluation

RQ1. Can S2RE model generate correct and valid regexes from NL descriptions? The Number of Successful Repairs by SynCorr and RFixer on Three Datasets

RQ2. Can SynCorr repair incorrect regexes from examples? .
: : : ‘ Structured
RQ3. Can TransRegex synthesize regexes accurately? Approach KB13 NL-RX-Turk |
. . Regex
RQ4. Can TransRegex synthesize regexes efficiently?
RFIXER 25/45 (55.6%) | 780/930 (83.9%) | 245/712 (34.4%)
SYNCORR 30/45 (66.7%) | 785/930 (84.4%) | 346/712 (48.6%)
RFIXER + SYNCORR | 35/45 (77.8%) | 895/930 (96.2%) | 387/712 (54.4%)

The DFA-equivalent Accuracy on Three Datasets. The Number of Valid Regexes Generated by the Three NLP-based Models

Approach KBI13 | NL-RX-Turk “"l;':::d ——— — —— ﬁt::ctun.-d
SEMANTIC-UNIFY 65.5% 38.6% 1.8% i
DEEP-REGEX (Locascio et al.) 65.6% SR 26 13 6% DEEP-REGEX (Locascio et al.) | 205 (99.5%) | 2500 (100%) | 494 (49.6%)
DEEP-REGEX (Ye et al.) | 66.5% 60.2% 24.5% SOFTREGEX 204 (99.1%) | 2500 (100%) | 902 (90.6%)
SEMREGEX 78.2%% 62.3% SaRE 206 (100%) | 2500 (100%) | 996 (100%)
‘.t:”H‘,R HOEX TH'TL} ﬁz'ﬂt’f 28.2% Average running time per benchmark on three datasets

S2RE 78.2% 62.8% 28.5% |
DEEP-REGEX (Ye et al.) + EXS 17.7% 83.8% 37.2% Approach KB13 NL-RX-Turk Structured
GRAMMARSKETCH+ MLE 68.9% 69.6% Regex
DEEPSKETCH + MLE 84.0% 85.2% DEEP-REGEX (Locascio et al.) 2621 s 1.104 s 2.108 s
DEEPSKETCH + MML 86.4% 84.8% SzRE 3578 s 1.656 s 3313 s
TRANSREGEX (52RE + SYNCORR) 92.7% 94.2% 63.3% | TRANSREGEX (SzRE + SYNCORR) 4958 s 3.085 s 8.624 s
TRANSREGEX (S2RE + RFIXER) 90.3% 94.0% 53.1% TRANSREGEX (S2RE + RFIXER) 5.821 s 4.737 s 22.460 s
TRANSREGEX (S2RE + SYNCORR + RFIXER) | 95.6% 98.6 % 67.4% TRANSREGEX (S2RE + SYNCORR + RFIXER) | 6.688 s 4011 s 13.737 s

Summary to RQ1: S2RE can achieve similar or better accuracy than the state-of-the-art NLP-based models. Meanwhile, S2ZRE can synthesize more valid regexes.
Summary to RQ2: SynCorr can more effectively repair regexes compared with the state-of-the-art tool RFixer.
Summary to RQ3: TransRegex can achieve higher accuracy than the NLP-based works with 17.4%, 35.8% and 38.9%, and the state-of-the-art multi-modal works with

10% to 30% higher accuracy on all three datasets.

Summary to RQ4: TransRegex can synthesize regex efficiently, especially when considering together with accuracy.

Conclusion

We propose an automatic framework TransRegex, for synthesizing regular expressions from both natural language descriptions and examples. To the best of our knowledge,
TransRegex 1s the first to treat the NLP-and-example-based regex synthesis problem as the problem of NLP-based synthesis with regex repair.
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