

Inferring Switched Nonlinear Dynamical Systems 推断切换型非线性动力系统

Xiangyu Jin^{1;2}, Jie An^{3;4}, Bohua Zhan^{1;2}, Naijun Zhan^{1;2} and Miaomiao Zhang³

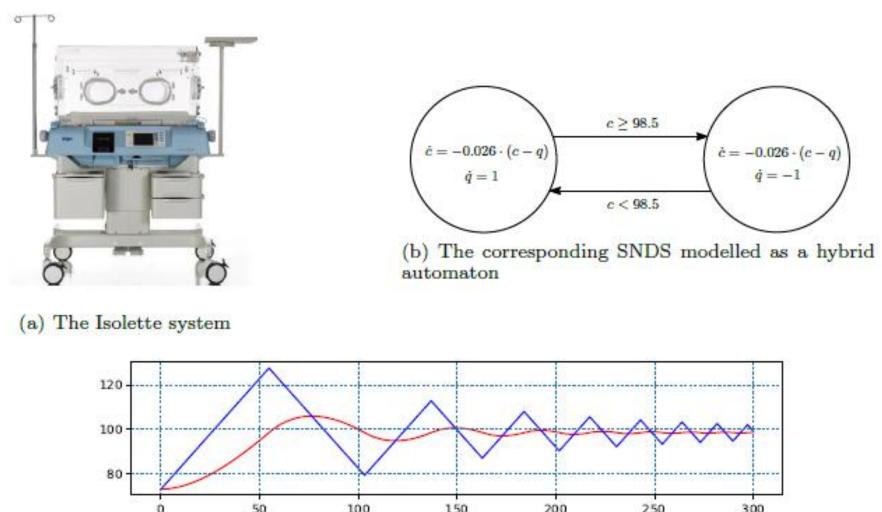
- 1. State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China
 - 2. University of Chinese Academy of Sciences, Beijing, China
 - 3. School of Software Engineering, Tongji University, Shanghai, China
 - 4. Max Planck Institute for Software Systems, Kaiserslautern, Germany

Email: bzhan@ios.ac.cn

Formal Aspects of Computing

System Identification

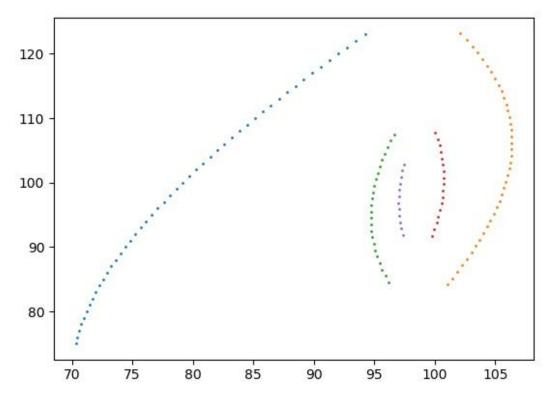
Purpose: Learning models for dynamical and hybrid systems from trajectories



(c) A simulated trajectory

Segmenting and Searching

Segmenting the trajectory by comparing the relative difference between the two estimates of derivatives.



Pruning searching to find the best clustering and then infer dynamics.

SNDS

Switched Nonlinear Dynamical Systems

$$\dot{x} = \begin{cases} f_1(x), & \text{if } x \in G_1(x) \\ f_2(x), & \text{if } x \in G_2(x) \\ \vdots \\ f_N(x), & \text{if } x \in G_N(x) \end{cases}$$

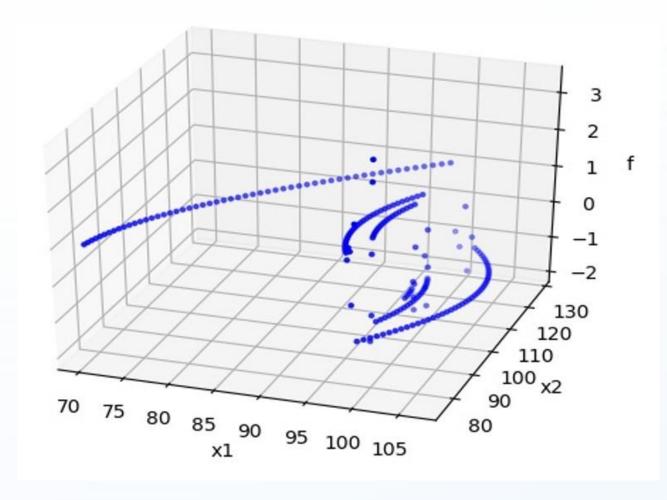
where f_i are polynimials and $\forall i, j \in \{1, 2, \dots, N\}, i \neq j \rightarrow G_i \cap G_j = \emptyset$

trajectory: $x(t_0)$, $x(t_1)$, $x(t_2)$, \cdots with $t_{i+1} - t_i = h$

Main Contributions

- A heuristic method to segment trajectories of a switched nonlinear dynamical system
- An inference procedure based on the segmented trajectories with a pruning search.
- An inference procedure by extending the identification methods of piecewise affine models.

Identification of piecewise affine models



Without prior segmentation, the estimated derivatives are captured by a piecewise affine model except the change points. The dynamics can be inferred by identification of this pwa model.

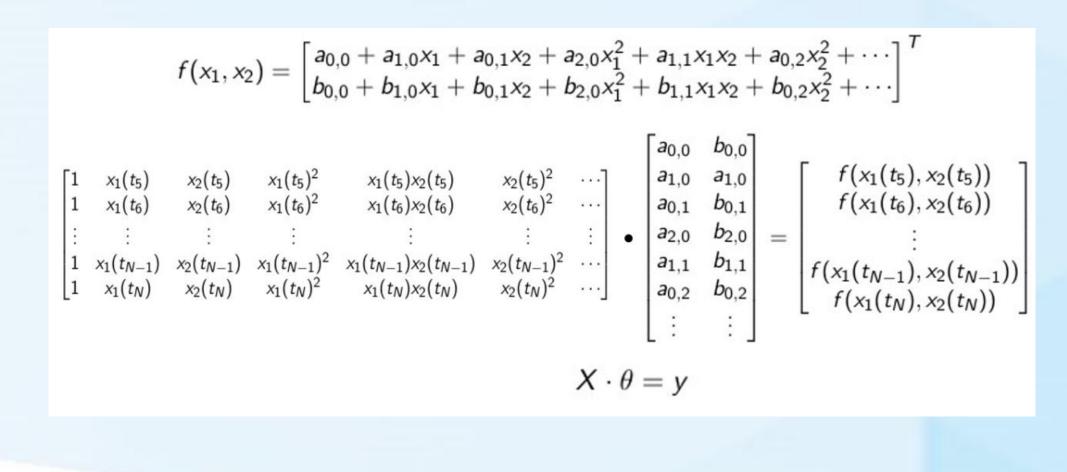
Inferring Dynamics

linear multistep method to estimate the derivatives on discrete points

$$f(x(t_n)) \approx \frac{1}{h} \left(\frac{137}{60} x(t_n) - \frac{300}{60} x(t_{n-1}) + \frac{300}{60} x(t_{n-2}) - \frac{200}{60} x(t_{n-3}) + \frac{75}{60} x(t_{n-4}) - \frac{12}{60} x(t_{n-5}) \right)$$

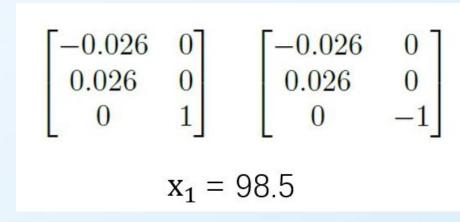
$$f(x(t_n)) \approx \frac{1}{h} \left(-\frac{137}{60} x(t_n) + \frac{300}{60} x(t_{n+1}) - \frac{300}{60} x(t_{n+2}) + \frac{200}{60} x(t_{n+3}) - \frac{75}{60} x(t_{n+4}) + \frac{12}{60} x(t_{n+5}) \right)$$

linear regression to infer the coefficients of the dynamic polynomials

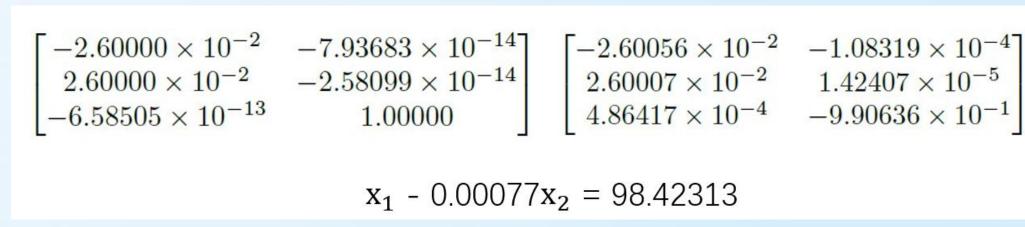


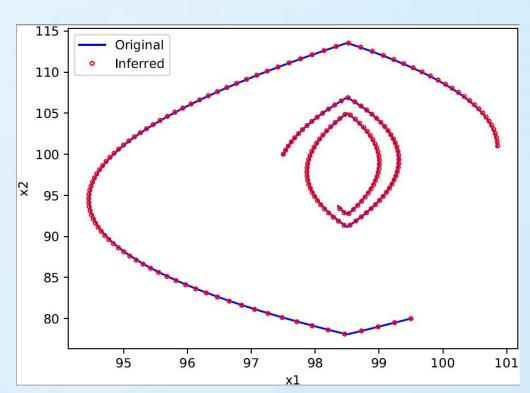
Experiments

> The Isolette example Origin system



Inferred system





Other examples

