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Markov decision process (MDP) offers a general framework for modelling sequential decision
making where outcomes are random. In particular, it serves as a mathematical framework for
reinforcement learning. This paper introduces an extension of MDP, namely quantum MDP
(QMDP), that can serve as a mathematical model of decision making about quantum systems.
We develop dynamic programming algorithms for policy evaluation and finding optimal policies
for gMDPs in the case of finite-horizon. The results obtained in this paper provide some useful
mathematical tools for reinforcement learning techniques applied to the quantum world.

Basic definitions

Definition 1. A gMDP is a 7-tuple

P=(T,H,p,A{E(la) : teT,ac A}, M, {ri:tcT})

where:

1) 7T ={1,2,--- , N} is the set of decision epochs.

2) ‘H=C" is the state space of an n-level quantum
system.

3) p is a density matrix in ‘H, called the starting state.

1) A is a set of action names.

5) For each t € T and a € A, & (:|a) is a super-operat-
ors in H.

6) M is a set of quantum measurements in H. We

write:

L) {M}xOM)).

MeM
7T)Foreach 1 <t<N-1,1.:0 x A— R (real num-
bers) is the reward function at decision epoch t, and
ry : O — R is the reward function at the final decision

epoch N.

Definition 2. Let 1 <t < N. Then a sequence
ht = (Mi,m1,a1, -+ ,Ms_1,me_1,a¢—1, M¢, my)

is called a history of ¢ epochs if (Mi,m1),---
(My—1,mi—1), (M¢,me) € O and a1, ,at—1 € A.

History h; records the activities of the decision maker:
For each j < t, she/he performed measurement M; on the
system, got outcome mj, and then took action a; on it. It
is assumed that measurement M; happened before action
aj;. If a; was taken before M, then the result would be
different because a measurement usually changes the
state of a quantum system. We write tail(hs) = (Mg, my).
The set of histories of ¢ epochs is denoted H.. Obviously,
if he € Hy, ag,ae41, 0 ,0e0(—1) € A and (Mey1,me41),
(Miy2,mes2), - s (Meyg, merr) € O, then

(ht? at. ﬂ-‘irt_|_1? miy1,at4-1, f'l-‘irt_|_2? Tt 2; eeey Qg (k—1) 5
Mk, misr) € Heqre
for 1 < k< N —L

Definition 3. Arandomised history-dependent policy

is a sequence ™ = (ap, f1, @1, ,BN-1,@N—1), Where:

1) g € D(M).

2) oy :Hi x A=->DM) fort=1,--- N —1.

3) Bt : He - D(A) fort =1,--- ,N — 1.

For each M € M, ao(M) is the probability that M is
chosen at the beginning of the decision process. For each
1<t<N-1 hy e H;, ae A and M € M, Bi(hi)(a) is
the probability that action a is chosen to take between
decision epoch t and t+4+ 1 given history hy, and
a¢(he,a)(M) is the probability that measurement M is
chosen to perform at epoch t -+ 1 given history h:; and

that action a was taken between epoch ¢t and ¢+ 1. In

particular, 7 is a deterministic (history-dependent) policy

if o, ai(he,a) and Bi(he) are all single-point distribu-
tions; that is, g € M, and

]ﬁtiﬂtXA—}MT I.{Bt:Ht_}A

9 §= Dy « s N —1;

Policy evaluation

As in the case of MDPs, a direct computation of the
reward in a qMDP based on defining emuation (6) is very
inefficient. In this section, we establish a backward recur-
sion for the reward function so that dynamic program-
ming can be used in policy evaluation for gMDPs. To this
end, we first introduce a conditional probability function.
Let m be a randomised history-dependent policy,
1 <t N and

he = (Mi,m1,a1,--+ , My_—1,me—1,ar—1, My, m¢) € Hy

fi = (as, Myy1,meq1,- - yan—1, My, my) € (A x O)N

Using the conditional probability function p™(:|h:), we
can compute the expected reward in the tail of a decision
process. More precisely, for each randomised history-de-
pendent policy 7, function

u: o Hy— R

is defined to be the expected total reward obtained by
using policy 7 at decision epochs t,t+1,---,N; i.e., for

every h: € Hy,

ug (ht) = Z p" (felhe) X 7(fe) (9)

ftE(AXO)N—t
where

N-—1

r{fi) = Z ri(M;,m;,a;) +rn(Mn,mn).

j=t

Theorem 1. (Backward Recursion) For each
1 <t< N —1, we have:

Ht ht Z Z .f('}t ht ﬂt) X ﬂit ht (Lt)(ﬂft+1
at€A Mgy 1eEM
[rt (Me,me,ae) + Y pesr X ugys (he, ar, Mega, -;*n,t+1)]
(10)

where the third ) is over mt1 € O(Mi41).
Optimality of policies

Now we turn to consider how to compute optimal
policies. The optimal expected total reward over the de-

cision making horizon is defined by

& = w
Uy — SUp V.

T

Theorem 2. (The principle of optimality) Let
iw: He — R(t=1,--- ,N) be a solution of the optimality
equations (13) and (14). Then,

ut(he) = ug (he)

forallt=1,---,N and h: € H;.




