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TL;DR

Conventional adversarial domain adaptation (ADA) methods learn representations with
strong transferability by eliminating the the Wasserstein distance-based discrepancy between
the probability distributions of the source and the target domains and train the classifier only
from the source domain data. We propose a novel method called auxiliary task guided mean
and covariance alignment network (AT-MCAN) to take the second-order statistics

differences into consideration and employ the data from both domains on training by
introducing an auxiliary clustering task to the target domain.
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both the tirst-order and second-order to the latent space. Then, based on the feature
statistics. representation of the latent space, AT-MCAN
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for the target domain to enhance the loss and cross-entropy loss, and aligns the
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generation bound of the proposed metric

and prove that introducing the auxiliary
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source and target domains.

* We denote the clustering function by ¢y,
and the objective function 1s defined as:

where n; is the total number of samples in the target domain

and H is an entropy operation.
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where U, V are orthogonal matrices that satisfy UTU =1, V'V =

I, I is the identity matrix of appropriate dimensions, ¢ : X — R is
a 1-Lipschitz function which satisfies |¢]||; = SUDs. ¢
o (x) —o W|/Ix—y| <1, |.]|, represents a certain matrix norm

that can be nuclear norm, 1-norm, 2-norm and Frobenius norm
and P;, P; € Prob (X).

(a) t-SNE of MMD features (b) t-SNE of DCORAL features

* The auxiliary clustering task guided
classifier.
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