

The 30th International Joint Conference on Artificial Intelligence (IJCAI-21) 主要联系人:石琳 (15001193593, shilin@iscas.ac.cn)

Introduction

• Dialog disentanglement is a natural language task for disentangling valuable software chat messages into distinct conversations, which

- is an essential prerequisite for in-depth analyses that utilize this information. A number of approaches has been proposed to address such issue of dialog entanglement, such as message-pairs models (FF, CNN *etc.*) or sequential-based models (BERT, E2E *etc.*).
- Unlike general conversations, software engineering (SE) dialogs have different and distinct characteristics: (1) SE dialogs heavily focus on resolving issues, which are mostly in the form of question and answer; (2) SE dialogs are domain-specific and each domain has its own technical terms and concepts; (3) SE dialogs usually involve more complex problems, which require developers to discuss various topics within one dialog.
- We conduct an exploratory study on 7,226 real-world developers' dialogs mined from eight popular open-source projects hosted on online forum: Gitter. The main contributions are summarized: (1) We conduct a comparative empirical study on evaluating the state-of-the-art disentanglement approaches on software-related chat; (2) We propose a novel measure, DLD, for quantitatively measuring human satisfaction on disentangled results; (3) We release a dataset of disentangled software-related dialogs to facilitate the replication of our study and future improvements of disentanglement models.

•
neriment

L1	Drainat	Demain	Entire	Population	Sample Population			
10	Project	Domain	PA	UT	PA	DL	UT	
P1	Angular	Frontend	22,467	695,183	125	97	778	
P2	Appium	Mobile	3,979	29,039	73	87	724	
P3	Dl4j	Data Science	8,310	252,846	93	100	1,130	
P4	Docker	DevOps	8,810	22,367	74	90	1,126	
P5	Ethereum	Blockchain	16,154	91,028	116	96	516	
P6	Gitter	Collaboration	9,260	34,147	87	86	515	
P7	Typescript	Language	8,310	196,513	110	95	1,700	
P8	Nodejs	Web App	18,118	81,771	144	98	737	
Total			95,416	1,402,894	822	749	7,226	

Model	Code	Dataset	Technology		Р	R	F1	loc ₃	MAP	MRR	NMI	ARI	ShenF
Weighted-SP	No	No (Linux)	Weight Calculation	Weighted-SP			\checkmark						\checkmark
ME Classifier	No	No (Ubuntu)	Traditional Classifier	ME Classifier	\checkmark								
BiLSTM	Yes	Yes (Movie)	Recurrent NN	BiLSTM			\checkmark		\checkmark		\checkmark		\checkmark
CISIR	No	Yes (News)	Convolutional NN	CISIR									\checkmark
FF	Yes	Yes (Ubuntu)	FeedForward NN	FF	\checkmark		\checkmark			\checkmark			\checkmark
BERT	Yes	Yes (Movie)	Encoder/Decoder NN	BERT			\checkmark				\checkmark		\checkmark
E2E	Yes	Yes (Movie)	Encoder/Decoder NN	E2E			\checkmark				\checkmark		\checkmark
PtrNet	Yes	Yes (Ubuntu)	Encoder/Decoder NN	PtrNet	\checkmark		\checkmark				\checkmark		

- **Dataset** is constructed from the most participated projects found in eight popular domains. The total number of participants is 95,416, accounting for 13% entire Gitter's participant population.
- **Models Selection:** Search the literature published in the representative venues for the last 15 years.
- Metrics Selection: Investigate the evaluation measures that are adopted by existing literature.

- Experiment 1: Original: Trained in the existing literature to disentangle our software-related chat.
- Experiment 2: Retraining: Retrain the five SOTA models on our software-related chat.

Measurement

A Novel Measure: DLD

• Dialog Levenshtein Revision: $DLR_{v} = E[\sigma(\Delta(D_{T}, D_{P}), \eta)]$

• Dialog Levenshtein Ratio:

 $DLR_t = E[1 - \Delta(D_T, D_P)/(D_T + D_P)]$

• Dialog Levenshtein Distance: $DLD = \lambda \cdot DLR_t + (1 - \lambda) \cdot DLR_v, 0 \le \lambda \le 1$

 	Category	Err	or	Correlation	Hypothesi		sis
	Analysis	RMSE	MAE	PEA	IST	PST	ANOV
	ME Classifier	0.38	0.34	0.08	E-55	E-46	E-55
	BiLSTM	0.37	0.32	0.02	E-19	E-17	E-19
i I	CISIR	0.41	0.36	0.17	E-69	E-59	E-69
	FF	0.19	0.14	0.85	E-4	E-14	E-4
 	BERT	0.08	0.92	0.92	0.51	0.31	0.51
1							

- The lowest error (RMSE: 0.08, MAE: 0.07), highest correlation (PEA: 0.92).
- No significant differences when compared to human satisfaction (Hypothesis).
- The lowest error across all projects (Figure).

	Bad Ca	ses			(Conclusion	
			Interact	ion Pattern			
10		R_1 : Does the	is approach make any sense?	\bigcirc <oq, <math="">R_i ></oq,>	W /1	to fine COTA diales di	

Bad Case 1: Ignoring Interaction Patterns (IIP: 64%)	$K_{1}: \text{ Boes this approach make any sense:} = \{0, R_{i}\} \\ R_{2}: \text{ If you want to leverage caching of build} \\ \{PA, R_{s}\} \\ \downarrow \\ R_{1}: \text{ Copy what I need into a docker image?} \\ R_{2}: \text{ You get my point!} \\ \{FD, R_{s}\} \\ \{FD, R_{s$
Bad Case 2: Ignoring Contextual Information (ICI: 21%)	Contextual-related: data model & mongodb R_1 : Can it be represented in data models ? R_2 : That's exactly why we have mongodb .
Bad Case 3: Mixing up Topics (MT: 9%)	$R_1: \underline{\text{How can I get it back please}} \\ R_2: \text{Try to install EasyDex.} \\ R_1: \underline{\text{How can I see my outstanding balance}} \\ R_2: \text{Use EasyDex its light wallet.} \\ R_1: \text{Thanks bro.} \\ \end{cases}$
Bad Case 4: Ignoring User Relationships (IUR: 6%)	Relation (P1, P3) = "friend" R_1 : Should I give up applying angular? R_2 : Why give up? R_3 : Igor will find and kill u :)

- We evaluate five SOTA dialog disentanglement models on SE dialogs to investigate how these models can be used in the context of SE.
- We conduct two experiments with the original and the retrained models respectively. Results show that the original FF model is the best one for disentangling SE dialogs.
- We introduce a novel measure DLD. Compared to other measures, DLD can more accurately measure human satisfaction.
- We investigate the reasons why some disentangled dialogs are unsatisfying, and identify four common bad cases.