○ 中国科学院软件研究所学术年会'2021 暨计算机科学国家重点实验室开放周

Jiawen Zhang, Jiaqi Zhu*, Yi Yang, Wandong Shi, Congcong Zhang and Hongan Wang

To appear in the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2021), Research Track

Contact: Jiaqi Zhu, zhujq@ios.ac.cn, 13683257241

S

Motivation

- Challenges of Relation Classification (RC)
- The emergence of new relation types
- Domain-specific annotated data are hard to access

Table 1. Examples of 2-way 1-shot RC tasks

学术论文

Training Task (Collected from Wikipedia)									
upport Set	(A) crosses	The DeSoto Bridge across the <i>Mississippi River</i> .							
	(B) part of	Herm is one of the <i>Channel Islands</i> in the English Channel.							

• The distant supervision brings a lot of noises

Regarding the RC task as a Few-Shot Learning problem

- Promising results in the general domain
- Poor domain adaptability

Main Ideas

- 1. Using open knowledge graphs (KGs) directly in downstream tasks
- 2. Utilizing the lightweight concept-level instead of the entity-level KGs
- 3. Summarizing the global semantics of relation types in addition to the instance-level knowledge enhancement
- 4. Treating the manner of using KGs as a kind of meta-information that can be transferred across tasks, even across domains

Jingkou District is one of three districts of **Zhenjiang**, **Jiangsu** province, China. Query **Testing task (Collected from Biomedical Literature)** (A) classified as These **tumors** are the most common *non-epithelial neoplasms* of gastric wall. Support Set Aniridia is a rare **congenital** ocular disorder of complete or partial *iris hypoplasia*. (B) occurs_in The lateral lesions and **dental cysts**, especially *radicular cysts*, are compared. Query

Proposed Model KEFDA

$$p_{\phi}(y = r|q) = \frac{\exp(-d(\boldsymbol{h}_{q}, \boldsymbol{h}_{r}))}{\sum_{r' \in \mathcal{R}} \exp(-d(\boldsymbol{h}_{q}, \boldsymbol{h}_{r'}))}$$
$$L_{\text{CE}} = -\sum_{r' \in \mathcal{R}} \sum_{r' \in \mathcal{R}} I_{r} \log p_{\phi}(y = r|q)$$

 $(\mathcal{R}, \mathcal{S}, q) \in \mathcal{T}_{\mathrm{Train}} r \in \mathcal{R}$

 $G_r = \nabla_{\boldsymbol{R}_r} L(\mathcal{S}_r), \ \boldsymbol{R}'_r = \boldsymbol{R}_r - \beta G_r$ Calculate the total loss upon query instance

 $L_{\mathrm{Tri}} = \sum_{(\mathcal{R}, \mathcal{S}, q) \in \mathcal{T}_{\mathrm{Train}}} L(q)$

Experiments

Dataset: FewRel 2.0 Domain Adaptation (DA) challenge^[3] KGs: WikiData (general domain), UMLS (medical domain)

Few-Shot RC Model	Avg.	5-Way 1-Shot	5-Way 5-Shot	10-Way 1-Shot	10-Way 5-Shot
Proto (CNN)	35.67	35.09	49.37	22.98	35.22
Proto (BERT)	38.75	40.12	51.50	26.45	36.93
Proto-ADV (BERT)	40.35	41.90	54.74	27.36	37.40
Proto-ADV (CNN)	43.54	42.21	58.71	28.91	44.35
BERT-PAIR	66.93	67.41	78.57	54.89	66.85
PAMN	78.98	77.54	90.40	65.98	82.03
DualGraph	81.83	80.11	91.01	73.89	82.34
GTP	82.18	80.04	92.58	69.25	86.88
KEFDA	88.82	87.81	95.00	81.84	90.63

As the leading approach in the challenge, KEFDA dramatically improves the classification accuracy for all settings. It raises GTP, the best model so far except ours, by 6.63% on average

[1] Snell Jake et al. "Prototypical Networks for Few-shot Learning". In NeurIPS. 2017, pp. 4077–4087. [2] Mingyang Chen et al. "Meta Relational Learning for Few-Shot Link Prediction in Knowledge Graphs". In EMNLP-IJCNLP. 2019, pp. 4216-4225.

[3] Tianyu Gao et al. "FewRel 2.0: Towards More Challenging Few-Shot Relation Classification". In EMNLP-IJCNLP. 2019, pp. 6249-6254.

Few-Shot RC Model	Avg.	5-Way 1-Shot	5-Way 5-Shot	10-Way 1-Shot	10-Way 5-Shot
ERNIE	54.26	55.24	62.70	47.68	51.43
KEFDA-DistMult (-DescCnptMeta.)	53.24	58.63	63.08	33.64	57.60
KEFDA-DistMult (-CnptMeta.)	66.53	72.95	68.58	59.59	64.98
KEFDA-DistMult (-Meta.)	87.52	85.55	93.75	80.38	90.40
KEFDA-RotatE	64.69	60.82	76.92	50.82	70.19
KEFDA-TransE	67.48	62.82	80.98	53.69	72.43
KEFDA-ANALOGY	86.85	85.58	94.30	78.84	88.69
KEFDA-DistMult	87.69	86.18	94.38	79.46	90.77

- The performance drops with the absence of each feature
- Concept features are most effective and significant
- Simple KG encoder which can handle multi-relational edges is better

Applications

New Knowledge Extraction: Discovering up-to-date knowledge from professional unstructured data which are updated and evolving over time **Knowledge Graph Updating:** Updating existing KGs gradually and automatically based on domain-specific texts