* Challenges of Relation Classification (RC)
* The emergence of new relation types Support Set
* Domain-specific annotated data are hard to access
* The distant supervision brings a lot of noises
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Table 1. Examples of 2-way 1-shot RC tasks

Training Task (Collected from Wikipedia)

(A) crosses ‘ The DeSoto Bridge across the Mississippi River.
(B) part_of ‘ Herm is one of the Channel Islands in the English Channel.

Query

Jingkou District is one of three districts of Zhenjiang , fiangsu province, China.

@ Regarding the RC task as a Few-Shot Learning problem

Testing task (Collected from Biomedical Literature)

© Promising results in the general domain Support Set

(A) classified_as ‘ These tumors are the most common non-epithelial neoplasms of gastric wall.
(B) occurs_in ‘ Aniridia is a rare congenital ocular disorder of complete or partial iris hypoplasia.

& Poor domain adaptability Query

The lateral lesions and dental cysts, especially radicular cysts, are compared.

Main Ildeas

1. Using open knowledge graphs (KGs) directly in downstream tasks

2. Utilizing the lightweight concept-level instead of the entity-level KGs

3. Summarizing the global semantics of relation types in addition to the
Instance-level knowledge enhancement

4. Treating the manner of using KGs as a kind of meta-information that can
be transferred across tasks, even across domains
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ADORAZ2B gene. This protein is involved in signaling and cellular defense. cellular response. This process is a central feature of a broad variety of physiologic responses.
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« Dataset: FewRel 2.0 Domain Adaptation (DA) challengel3]
 KGs: WikiData (general domain), UMLS (medical domain)

Few-Shot RC Model Avg. 5-Way 1-Shot 5-Way 5-Shot 10-Way 1-Shot 10-Way 5-Shot

Proto (CNN) 35.67 35.09 49.37 22.98 35.22
Proto (BERT) 38.75 40.12 51.50 26.45 36.93
Proto-ADV (BERT) 40.35 41.90 54.74 27.36 37.40
Proto-ADV (CNN) 43.54 42.21 38.71 28.91 44.35
BERT-PAIR 66.93 67.41 78.57 54.89 66.85
PAMN 78.98 77.54 90.40 65.98 82.03
DualGraph 81.83 80.11 91.01 73.89 82.34
GTP 82.18 80.04 92.58 69.25 86.88
KEFDA 88.82 87.81 95.00 81.84 90.63

Few-Shot RC Model Avg. 5-Way 1-Shot 5-Way 5-Shot 10-Way 1-Shot 10-Way 5-Shot
ERNIE 34.26 55.24 62.70 47.68 51.43
KEFDA-DistMult (-Desc. -Cnpt. -Meta.) 53.24 58.63 63.08 33.64 57.60
KEFDA-DistMult (-Cnpt. -Meta.) 66.53 72.95 68.58 59.59 64.98
KEFDA-DistMult (-Meta.) 87.52 835.55 93.75 80.38 90.40
KEFDA-RotatE 64.69 60.82 76.92 50.82 70.19
KEFDA-TransE 67.48 62.82 80.98 53.69 72.43
KEFDA-ANALOGY 86.85 85.58 94.30 78.84 88.69
KEFDA-DistMult 87.69 86.18 94.38 79.46 90.77

 The performance drops with the absence of each feature
« Concept features are most effective and significant
 Simple KG encoder which can handle multi-relational edges is better

L oroves he Hasication scoura R ~______________ Applications
improves the classification accuracy for all settings. It raises GTP, I

the best model so far except ours, by 6.63% on average
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