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(a) Hand-written digits

(b) Hand-written character

* A deep learning model will anyway classify an input to
a category that the model 1s trained for.

* But predicting a picture of a hand-written character to a
digital category 1s totally wrong.

* Out-of-Distribution (OOD) detection aims to detect
such an OOD input (1f any).

» Output Distribution of A Neuron

* Indeed, a neuron may output a relatively greater or
less value for certain categories than for others.
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Fig. 1. Output Distributions of A Neuron (MNIST)

> Relative Activation & Relative Deactivation

* Let u; ly denote the average output of neuron n;; under

all the inputs x' € D that is not classified into category
y by model M, 1.e.

e Zx’ED,M(x’);A;{) out; (")
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o If out;(x) > u;;, neuron n;; is relatively activated.

o If out;(x) < u;?, neuron n;; is relatively deactivated.

> Relative Selectivity
» The relative selectivity 7s;(x) of neuron n;; under

input x € D that 1s classified into category y by model
M 1s defined as below:
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where p;; 1s the average output of neuron n;; under
all the inputs x' € D.

» Relative Activation-Deactivation Abstractions
* Neurons can be abstracted into three states under any
input: relative strongly activated, relatively non-
selective, and relative strongly deactivated.

* Then, the following three-valued function abst: R —
{—1, 0, 1} uniformly abstracts the inference behavior
on neuron n;; under mnput x :

1 if rs'(z) > ub
abst(rst(z)) =< 0 if rst(x) € (Ib, ub)
—1 ifrsh(z) <1b

layer 2

input x

Fig. 2. Relative Activation-Deactivation Abstractions

> Re-AD

* The relative activation-deactivation abstractions (Re-AD)
are rather close to each other under the inputs of the same
categories, while far away from each other under the
inputs of different categories.

* An OOD mput, of which the category 1s unknown to the
model, may lead the model to diverge from its Re-AD
abstraction patterns collected for the predicted category.

* A Boolean indicator for OOD detection can be formally
defined:

true it o(x,y) > A
O0D M(.’lﬁ) — ( j. ) Y
false otherwise
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Fig. 3. OOD Detector Fig. 4. GTSRB vs TinyImageNet

» 00D Detection Type I

* Two datasets: one for training, the other for OOD detection.

Training 00D Re-AD | Baseline | OpenMax | ODIN
FMNIST 0.9660 | 0.9822 0.9851 0.9882
MNIST Omniglot 0.9753 | 0.9712 0.9778 0.9787
Uniform Noise | 0.9846 | 0.9960 0.9931 0.9975
Gaussian Noise | 0.9861 | 0.9971 0.9939 0.9983
MNIST 0.9762 | 0.7159 0.7374 0.7872
EMNIST Omniglot 0.9742 | 0.6651 0.7002 0.7409
Uniform Noise | 0.8505 | 0.8382 0.8568 0.8918
Gaussian Noise | 0.9723 | 0.9110 0.9143 0.9488
TinylmageNet | 0.8792 | 0.8321 0.8428 0.8575
LSUN 0.9033 | 0.8509 0.8721 0.9087
Cifar10 iISUN 0.9012 | 0.8461 0.8678 0.9041
Uniform Noise | 0.8540 | 0.7081 0.6743 0.7355
Gaussian Noise | 0.9473 | 0.7614 0.7549 0.7896
TinylmageNet | 0.9916 | 0.9898 0.5002 0.9959
LSUN 0.9924 | 0.9906 0.5002 0.9966
GTSRB iISUN 0.9924 | 0.9907 0.5002 0.9965
Uniform Noise | 0.9943 | 0.9916 0.5002 0.9964
Gaussian Noise | 0.9949 | 0.9938 0.5002 0.9986
Average 0.9520 | 0.8907 0.7595 0.9173
[ ]
» O0OD Detection Type I1

* Splitting a dataset into two parts with different categories:
one for training and the other for OOD detection

OO0D performance (MNIST) KR

OOD performance (FMNIST)

Fig. 5. Performance of OOD detection

» 00D Detection in Object Detection System

* When an object detection system trained in Cityscapes
dataset 1s applied in different weather conditions, the
wrong predictions can be well detected through Re-AD:
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Fig. 6. Froggy Cityscapes Fig. 7. BDDI100K

* We propose the notion of relative selectivity to equally
value the effects of both the activation and deactivation
behaviors of neurons.

* We present a Re-AD approach to represent the inference
behavior of the deep learning, and 1t 1s also an effective
solution for OOD detection.

* Experiments results show that Re-AD outperforms the
state-of-the-art OOD detection approaches in terms of
the AUROC and TPR performances, without adjusting
the input data or the model itself.
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