


Are We Building on the Rock? On the Importance of Data Preprocessing for Code Summarization

论数据质量在代码注释自动生成中的重要性

石琳 沐方文 陈啸 王松 王俊杰 杨叶 李戈 夏鑫 王青 the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2022) 主要联系人:石琳(15001193593,shilin@iscas.ac.cn)

Introduction

- Code summarization models require large-scale and high-quality training datasets. To that end, multiple benchmark datasets for code summarization tasks have been constructed. Although these datasets are expected to be of good quality, noise is inevitable due to the differences in coding conventions and assumptions employed in modern programming languages and IDEs.
- To investigate the aforementioned concerns of data quality for code summarization, we conduct a systematic study to assess and improve the quality of four widely-used benchmark datasets.

Noisy Data Taxonomy

	NOISY Data Taxonomy					
	Comment-Related Noisy Data	Code-Related Noisy Data				
Partial Sentence	<pre>/* Returns the high-value * for an item within a series. */</pre>	Empty Function	<pre>/*Specifies the behaviour of the automaton in its end state*/ protected void end(){}</pre>			
Verbose Sentence	Generate a CSV file containing a summary of the xBlock usage Arguments:course_data	Commented-Out	/* for now try mappig full type URI */			
Content Tampering	Builds the JASPIC application context.	Commented-Out	<pre>// public String transformTypeID(URI typeuri){ // return typeuri.toString();}</pre>			
Over-Spliting	<pre>/* This method initializes jTextField. */</pre>	Block-Comment	<pre>/* Get GPS Quality Data */ public int getFixQuality(){</pre>			
Non-Literal	/* 将JSONArray转换为Bean的List, 默认为ArrayList	DIOCK-Comment	<pre>checkRefresh(); // TODO: Why is he using Math.round?</pre>			
Interrogation	<pre>/* Do we need to show the upgrade wizard prompt? public boolean isDue() {</pre>	Auto Code	<pre>/* Test the constructor */ public void testConstructor() {</pre>			
Under- Developmen	<pre>/* Description of the Method */ protected void openFile(File f) {</pre>	Duplicated Code	Developers often reuse code by copying, pasting and modifying to speed up software development			

Effectiveness Evaluation

		Dataset			Performance (%)			
	Category	#Anno- tations (100%)	Rule- Build (80%)	Rule- Test (20%)	P	R	F1	
	Partial Sentence	176	135	41	97.5	95.1	96.3	
	Verbose Sentence	129	111	18	94.7	100.0	97.3	
Comment	Content Tampering	147	120	27	92.9	96.3	94.6	
	Over-Splitting	84	63	21	90.9	95.2	93.0	
	Non-Literal	38	30	8	100.0	100.0	100.0	
	Interrogation	16	7	9	100.0	88.9	94.1	
	Under-Development	57	92	57	91.5	94.7	93.1	
	Total	647	558	181	95.4	95.8	95.5	
Code	Empty Function	21	14	7	100.0	100.0	100.0	
	Commented-Out Method	4	2	2	100.0	100.0	100.0	
	Block-Comment Code	44	31	13	100.0	92.3	96.0	
	Auto Code	179	133	46	97.7	93.5	95.6	
	Duplicated Code	22	16	6	100.0	100.0	100.0	
	Total	270	196	74	99.6	97.2	98.3	

Our code-comment cleaning tool can accurately filter noisy data, with all the F1 scores of over 90.0%

Distribution of noisy data

	Category of Noisy Data	Funcom (%)	TLC (%)	CSN (%)	PCSD (%)
	Total	65.8	41.9	37.2	31.2
	Partial Sentence	17.1	0.0	7.8	15.9
	Verbose Sentence	0.0	22.8	0.0	7.8
nt	Content Tampering	9.7	3.2	24.4	0.5
Comment	Over-Splitting	24.1	0.0	0.0	0.0
om	Non-Literal	0.5	0.0	7.8	0.2
	Interrogation	0.7	0.9	0.7	0.3
	Under-Development	3.7	1.2	1.2	2.3
	Total	40.9	25.4	36.1	26.5
	Empty Function	1.6	1.1	0.0	0.0
	Commented-Out Method	0.2	0.0	0.0	0.0
Code	Block-Comment Code	11.1	0.0	0.0	0.0
ŭ	Auto Code	29.8	4.6	1.6	4.3
	Duplicated Code	0.6	18.4	0.0	1.5
	Total	40.7	22.6	1.6	5.8
	Removed noisy data	38.7	21.1	29.2	9.3
	Updated noisy data	27.1	20.8	8.0	21.9

Finding 1: Noisy data extensively exist in the four benchmark datasets, ranging from 31.2% to 65.8%.

Impacts on the performance of models

Benchmark	Model	Train set	BLEU	U-1	BLEU-2	BLEU-3	BLEU-4	ROUGE	METEOR
		Origin	23.87		14.28	11.4	10.05	26.88	12.59
	NNGen	Controlled	21.93		12.19	9.34	8.09	24.84	11.39
		Filtered	24.58 3	3.0% ↑	15.26 6.9% ↑	12.49 9.6% ↑	11.2 10.3% ↑	27.08 0.7% ↑	13.24 5.2% ↑
	NCS	Origin	29.95		17.79	10.2	6.42	34.84	16.14
Funcom		Controlled	29.33		17.06	9.78	5.31	34.05	15.65
		Filtered	30.53 1	.9%↑	18.79 5.6% ↑	11.47 12.5% ↑	7.64 16.0% ↑	35.42 1.7% ↑	16.32 1.1% ↑
		Origin	27.23		15.97	9.62	6.43	31.97	14.32
	Rencos	Controlled	26.90		15.71	9.48	6.42	31.79	14.16
		Filtered	27.92 2	2.5% ↑	16.8 5.2% ↑	10.61 10.3% ↑	7.44 13.6% ↑	32.51 1.7% ↑	14.50 1.3% ↑
		Origin	32.58		24.16	21.92	20.74	36.07	18.14
	NNGen	Controlled	39.84		32.01	29.24	27.51	43.57	23.22
		Filtered	46.88 4	13.9% ↑	39.27 62.5% ↑	36.81 67.9% ↑	35.19 41.1% ↑	49.08 36.1% ↑	25.53 40.7% ↑
		Origin	42.09		32.95	29.09	27.09	46.30	24.18
TLC	NCS	Controlled	39.28		29.61	25.83	23.89	43.49	22.11
		Filtered	46.52 1	0.5% ↑	37.19 12.9% ↑	33.41 14.9% ↑	31.38 13.7% ↑	49.40 6.7% ↑	24.67 2.0% ↑
	Rencos	Origin	43.66		34.82	31.29	29.19	47.87	24.95
		Controlled	43.71		34.89	31.21	28.93	47.85	25.37
		Filtered	51.54 1	8.0% ↑	42.90 23.2% ↑	39.22 25.3% ↑	37.00 21.1% ↑	54.25 13.3% ↑	28.21 13.1% ↑
	NNGen	Origin	14.86		6.08	4.07	3.42	18.04	8.54
		Controlled	13.95		5.09	3.21	2.62	17.08	7.97
		Filtered	19.89 3	33.8% ↑	8.28 36.2% ↑	5.72 40.5% ↑	4.96 31.0% ↑	23.17 28.4% ↑	9.67 13.2% ↑
	NCS	Origin	25.47		12.34	5.81	3.02	30.47	12.48
CSN		Controlled	25.45		12.29	5.68	2.88	31.17	12.30
		Filtered	28.68 1	2.6% ↑	14.01 13.5% ↑	6.96 19.8% ↑	3.87 22.0% ↑	34.29 12.5% ↑	13.84 10.9% ↑
	Rencos	Origin	16.99		7.65	4.09	2.64	20.91	8.33
		Controlled	16.30		7.09	3.75	2.43	20.00	8.13
		Filtered	24.72 4	15.5% ↑	11.36 48.5% ↑	6.51 59.2% ↑	4.56 42.1% ↑	29.35 40.4% ↑	11.52 38.3% ↑
	NNGen	Origin	22.52		15.48	12.63	10.45	24.90	12.97
		Controlled	21.81		14.77	11.99	9.91	24.16	12.49
		Filtered	25.96 1	5.3% ↑	18.91 22.2% ↑	16.27 28.8% ↑	14.00 25.4% ↑	27.68 11.2% ↑	15.09 16.3% ↑
	NCS	Origin	28.14	- 1	18.69	14.28	11.36	32.95	16.30
PCSD		Controlled	l		17.42	13.05	10.17	31.77	15.42
		Filtered	37.33 3	32.7% ↑	24.74 32.4% ↑	19.49 36.5% ↑	16.48 31.1% ↑	40.93 24.2% ↑	18.67 14.5% ↑
		Origin	30.37	'	21.27	16.42	12.93	33.66	17.40
	Rencos	Controlled	l		20.55	15.71	12.37	33.05	16.96
		Filtered	33.59 1	0.6% ↑	24.14 13.5% ↑	19.63 19.5% ↑	16.10 19.7% ↑	36.15 7.4% ↑	19.18 10.2% ↑

Finding 2: Removing noisy data from the training set in the four datasets has a positive influence on the performance of the models (improving BLEU-4 by 21%-27%).

Conclusion

- We propose a taxonomy of data preprocessing noises in four popularly used benchmark datasets for code summarization, which contains 12 different types of noise.
- We develop an automated data cleaning tool for code summarization datasets, which can help distill high-quality code-comment data.
- We perform a comprehensive assessment on data quality of datasets, which provides practical insights for future research.
- We conduct a comparative analysis on the performance of code summarization models, our results show that removing noises yields significant model perfomance improvement.