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Motivation Introduction

-

We propose a deep learning
framework to produce 3D hand
shape from a single depth image.

Recent emerging technologies such AR/VR and HCI are drawing high
demand on more comprehensive hand shape understanding, requiring not

only 3D hand skeleton pose but also hand shape geometry. Our main contributions:

1. We propose a deep learning
framework for hand shape

reconstruction with easy-to-

2. Different datasets have different keypoint labels. access weak supervisions of

hand pose and point cloud from

the input depth;

The current difficulties include:
1. No annotation of the hand shape.

. We present a joint regression
network, which uses hand shape
as input to predict hand joints

- | and facilitates the hand pose
Synthetic daptati f diff t hand
Dataset Public Benchmarks Y W RS adaptation of aifierent nan

skeleton definitions;

Shape network
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Detail of our network for hand
shape recovery and hand pose
estimation. Our method consists of

Camera pand shape 1 Mean Shape Loss three stages, takes point cloud as
""""""""""""""" input and generates the 3D hand
emm =Rl .. shape of a hand and its 3D joints.
: & 5 Stage 1 and Stage 2 are named as
: nsm:k “-. \l// | Regression JAYE” Lot Loss hand shape reconstruction network,
'l Network s and Stage 3 is named as joint

Derotated ~ — — — — — — _ _ _ - Hand shape
point cloud

Detail of our network for hand shape recovery and hand pose estimation

regression network.

Joint Regression Network

We propose a joint regression
network to bridge the domain
~gap of hand pose between
L\ [ £ . # synthetic dataset and real
Joint -\ ~ ——/  data. It can support more
4 TN g diverse and effective joint
adaptation and achieve good
generalization performance.

Regression
Network

Synthetic Dataset Public Benchmarks

Comparison with SOTA Qualitative results
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Comparisons with hand shape recovery methods on NYU and ICVL Hand shape +  Hand shape + Hand shape Hand shape

point cloud point cloud (Ours) (w/o0 mean-shape)
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