

Learning DMEs and DGMEs From Both Positive and Negative Examples

Yeting Li, Haiming Chen, Zixuan Chen

The Computer Journal, 2022, Yeting Li, 15801685206, liyt@ios.ac.cn

Background & Motivation

- XML documents with corresponding schemas on the Web only account for 30.2%, with the proportion of 24.5% for valid ones.
- We focus on the inference of disjunctive multiplicity schema (DMS).
- The central task of DMS inference is learning disjunctive multiplicity expression (DME). Previously, DME learning has been studied from positive examples.

Contributions

- We devise an algorithm called iDME based on a genetic algorithm for learning DMEs from positive examples S_+ and negative examples S_- .
- We propose a new subclass that allows numeric occurrences called disjunctive generalized multiplicity expressions (DGMEs). We provide an algorithm called iDGME for learning DGMEs.
- Results show that with only S_+ , our algorithm can learn a DME that accepts all positive examples. And when given S_+ and S_- , we can learn DMEs or DGMEs with high accuracy.

Approach: Based on Genetic Algorithms

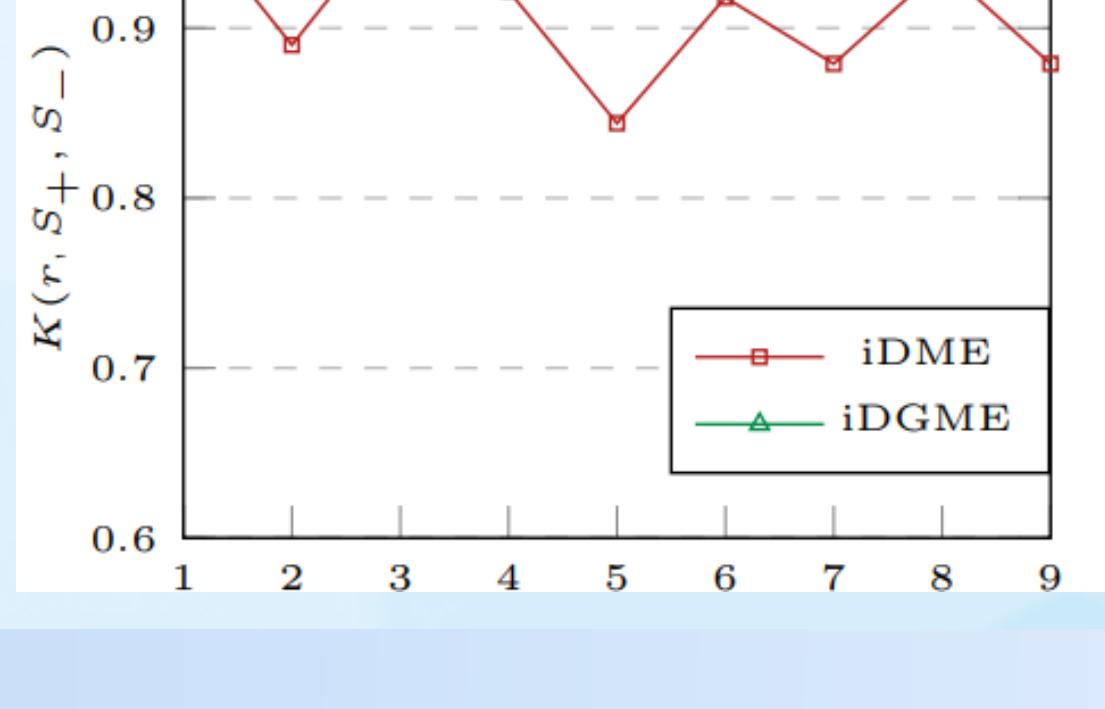
- encoding: DME $r \rightarrow (c_{pop}, m_{pop}, \tau)$
- measurement:
$$K(r, S_+, S_-) = \frac{|T_P| + |T_N|}{|S_+| + |S_-|} \quad CC(r) = n! * \prod_{i=1}^n |D_i|$$
- c_{pop} crossover (iDME):

- m_{pop} mutate (iDME):
- m_{pop} crossover (iDME):
- m_{pop} mutate (iDGME):

Evaluation

Success rate on synthetic target DMEs under different proportion of S_+ and S_- .

No.	# successes	rate	$ S_+ $	$ S_- $
1	6	11.54%	25	0
2	10	19.23%	50	0
3	13	25.00%	75	0
4	20	38.46%	200	0
5	24	46.15%	250	0
6	25	48.08%	300	0
7	12	23.08%	25	25
8	16	30.77%	50	25
9	17	32.69%	75	25
10	25	48.08%	200	25
11	29	55.77%	250	25
12	30	57.69%	300	25
13	17	32.69%	25	75
14	20	38.46%	50	75
15	23	44.23%	75	75
16	32	61.54%	200	75
17	34	65.38%	250	75
18	36	69.23%	300	75
19	33	63.46%	200	100
20	35	67.31%	250	125
21	37	71.15%	300	150
22	35	67.31%	200	200
23	39	75.00%	250	250
24	43	82.70%	300	300


$learner_{DME}^+$

The learned DMEs of $learner_{DME}^+$ & iDME.

K_1 K_2

$ \Sigma $	$ S_+ $	$learner_{DME}^+$	iDME	K_1	K_2
5	500	$(a^+ e) \parallel (c^2 d^2) \parallel b^*$	$(a^+ e) \parallel (c^2 d) \parallel b^*$	1	1
10	500	$(a^+ c^2 e^*) \parallel b^+ \parallel d^2$	$(a^+ c e^*) \parallel b^+ \parallel d^2$	1	1
15	500	$(a^2 d^2) \parallel b^* \parallel c^* \parallel e^+$	$(a d^2) \parallel b^* \parallel c^* \parallel e^+$	1	1
100	100	$(a^2 b^* c^2 g^* h^* i^* j^*) \parallel d^+ \parallel e^2 \parallel f^*$	$(a b^+ c g^+ h^+ i^+ j^*) \parallel d^+ \parallel e^2 \parallel f^*$	1	1
100	500	$(c^* g^* h^* i^* j^*) \parallel (a^* b^* d^*) \parallel e^* \parallel f^*$	$(a^+ b^+ c^+ d^*) \parallel (e^+ g^+ j^*) \parallel (f^+ h^+ i^*)$	1	1
100	1000	$(a^* b^* c^* d^* e^* f^*) \parallel g^* \parallel h^* \parallel i^* \parallel j^*$	$(a^+ b^+ c^+ d^*) \parallel (e^+ g^+ j^*) \parallel (f^+ h^*) \parallel i^*$	1	1
100	500	$(d^* e^* l^* m^* n^* o^*) \parallel (f^* g^* i^* k^*) \parallel (a^* c^* h^*) \parallel (b^* j^*)$	$(a^+ c^+ h^+ m^+ o^*) \parallel (b^+ d^+ e^+ j^+ n^*) \parallel (f^+ g^+ i^+ k^+ l^*)$	1	1
100	1000	$(d^* e^* f^* l^* m^* n^*) \parallel (a^* c^* h^* o^*) \parallel (g^* i^* k^*) \parallel (b^* j^*)$	$(a^+ c^+ h^+ m^+ o^*) \parallel (b^+ d^+ e^+ j^+ n^*) \parallel (f^+ g^+ i^+ k^+ l^*)$	1	1
100	1000	$(a^2 b^2 c^2 d^2 e^*) \parallel f^* \parallel g^2 \parallel h^2 \parallel i^2 \parallel j^* \parallel k^2 \parallel l^* \parallel m^* \parallel n^* \parallel o^+$	$(c d e f k^2) \parallel (a b g^2) \parallel f^* \parallel h^2 \parallel i^2 \parallel j^* \parallel k^2 \parallel l^* \parallel m^* \parallel n^* \parallel o^+ \parallel l^*$	1	1

$K(r, S_+, S_-)$ value of expressions inferred by iDME and iDGME

- If only S_+ are available, iDME may learn an over-generalized DME, and the addition of S_- is very useful for learning DMEs.
- With only S_+ , both our algorithm and the state-of-the-art algorithm can learn a DME that accepts all S_+ .
- The results learned by iDGME accept more S_+ and reject more S_- than that of iDME. Namely, iDGME can learn expressions more accurately.

Conclusion

We provided an algorithm iDME to learn a DME from S_+ and S_- based on genetic approaches. We extended the subclass DME to DGME which allows numeric occurrences, and developed the algorithm iDGME to learn a DGME.