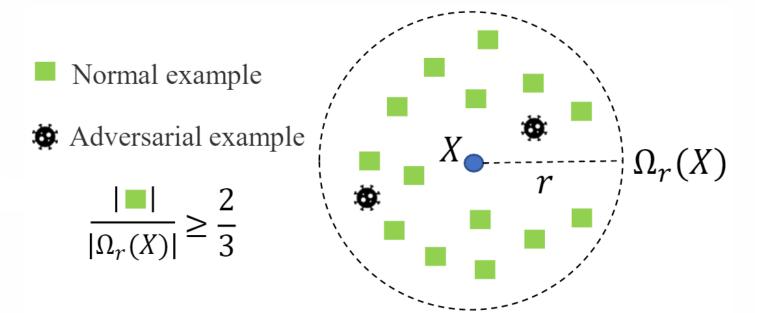


Word Level Robustness Enhancement: Fight Perturbation with Perturbation 词语级鲁棒性加强: 用扰动打败扰动

Pei Huang*, Yuting Yang*, Fuqi Jia, Minghao Liu, Feifei Ma[™], Jian Zhang [™] **AAAI 2022**

联系人: 黄 沛 huangpei@ios.ac.cn 18201101474

Word-level Robustness



Word substitution alerts NN's prediction, which can be especially dangerous in some applications like privacy detection and fake news detection.

Weak Robustness

Definition 3 (Weak Robustness). If the value of PR > 2/3, f is said to be weakly robust on the perturbation space $\Omega_r(X)$, where PR is defined as:

$$PR := \frac{|\{X' : X' \in \Omega_r(X) \land f(X') = y^*\}|}{|\Omega_r(X)|}$$
 (2)
$$\frac{|\bullet|}{|\Omega_r(X)|} \ge \frac{2}{3}$$

Model	Dataset	PR > 2/3
	MR	96.84%
BiLSTM	IMDB	96.94%
	SNLI	85.95%
	MR	98.88%
BERT	IMDB	97.61%
	SNLI	96.96%

An interesting phenomenon:

Algorithm 1: Enhancement Classifier F

Adversarial examples are everywhere but occupy a small ratio in the perturbation spaces!

Our Defense Method: Fight Perturbation with Perturbation (FPP)

Input:X**Parameter**: A base classifier f **Output**: Prediction \widetilde{y} 1: for all $p \in P$ do 2: $s \sim U(0,1)$; 3: if $\Delta_{12}(p) > s$ then

\\ Replace w_p via w_p*

 $X_{w_p \leftarrow w_p *}$ end if 6: end for

7: $N \leftarrow -2 \ln \epsilon / (2 * 2/3 - 1)$

8: $r \leftarrow \kappa n$

9: for $i \leftarrow 0$ to N-1 do

10: $X_i \sim \Omega_r(X)$;

11: $l_i \leftarrow f(X_i);$

12: end for 13: $\widetilde{y} \leftarrow \arg\max_{y \in \mathcal{Y}} \sum_{i=0}^{N-1} \mathbb{I}(l_i = y)$

14: return \widetilde{y}

Fight Fire with Fire! (以彼之道,还施彼身!)

Step 1: Input perturbation (Destroy the subtle combination of attacker via perturbing.)

Step 2: Random perturbation & voting (Based on weak robustness property, enhance the prediction result via the voting of random perturbations.)

If PR in weak robustness definition is 2/3 and we want the error rate of enhanced prediction $\epsilon = 10^{-5}$, sample size N in Step 2 needs to satisfy:

$$N > \frac{-2ln\epsilon}{(2PR - 1)^2} > 207$$

Defense Results

		LSTM				BERT					
Dataset	Method	Acc	Textfooler		SemPSO		Acc	Textfooler		SemPSO	
			Suc↓	Rob	Suc↓	Rob		Suc↓	Rob	Suc↓	Rob
MR	f	82.47	69.70	25.00	81.82	15.00	89.60	48.35	47.00	73.63	24.00
	Adv	79.85	65.82	27.00	82.27	14.00	88.00	35.91	58.00	73.08	24.50
	FGWS	78.73	56.60	34.50	76.73	18.50	83.88	23.98	65.00	56.14	37.50
	SAFER	77.60	22.08	60.00	27.10	56.50	86.32	7.30	82.00	13.50	67.50
	F	81.16	14.65	67.00	25.79	59.00	87.72	8.89	82.00	10.87	72.50
IMDB	f	89.94	86.24	13.00	99.45	0.50	93.68	82.63	16.5	92.51	7.00
	Adv	87.64	71.03	25.50	99.95	0.50	91.00	38.95	58.00	58.42	41.00
	FGWS	85.70	77.84	19.50	92.61	6.50	89.60	62.30	34.50	88.52	40.50
	SAFER	86.60	13.97	77.00	25.28	66.50	88.00	7.07	85.50	-	-
	F	89.30	3.70	91.00	9.89	82.00	93.40	3.11	93.50	-	-
SNLI	f	84.35	72.05	22.50	50.93	39.50	86.77	69.94	26.00	71.10	25.00
	Adv	84.35	75.16	20.00	60.87	31.50	82.53	52.98	39.50	54.17	38.50
	FGWS	72.40	38.06	41.50	37.31	42.00	75.60	44.06	40.00	44.76	39.50
	SAFER	56.60	19.66	47.00	17.24	48.00	67.00	26.90	53.00	27.08	52.50
	F	80.27	22.22	59.50	26.53	54.00	83.90	15.34	69.00	24.84	59.00

Table 2: Robustness evaluation results of different defense methods. Acc is the clean accuracy on test set. Suc is the successful attacking ratio. Rob is the robustness accuracy. Only for Suc, the lower the value, the better the defense capability of the model. It is noted with \downarrow . The numbers in bold denote the best performance for the metric.

- FPP achieves the highest robustness accuracy (Rob) on all three data sets and two different models.
- FPP has a good trade-off between clean accuracy (Acc) and robustness (Rob).