

自适应多粒度对齐的目标检测方法

Multi-Granularity Alignment Domain Adaptation for Object Detection

Wenzhang Zhou¹ Libo Zhang^{1,2*}, Tiejian Luo¹, Yanjun Wu², ¹UCAS ²ISCAS

CVPR 2022, 张立波 18655882017

Introduction

- Task:** Unsupervised adaptive detection is to improve the performance of detector learned from labeled source domain on new environments without labeled training data.
- Solution:** the domain discriminator identifies whether the image is from source domain or target domain; while the object detector learns domain-invariant features to confuse the discriminator.

- Challenges:** discrepancies in different scenes

Motivation

- Discriminative representation:** The omni-scale gated fusion module can extract a discriminative representation in terms of objects with different scales and aspect ratios.

- Distribution alignment:** The proposed category-level discriminator is to align the feature distribution based on **instance discriminability** in different categories and **category consistency** between source domain and target domain.

Our Approach

- Our framework to encode multi-level dependencies**

- Architecture of our domain adaptive object detection**

- Omni-scale Gated Fusion**

For fcos framework, a series of convolutional layers and IoU is used as the coarse detector and loss function, respectively. To extend our framework to Faster-RCNN, we replace them with RPN and the original RPN loss.

$$\mathcal{L}_{\text{gui}} = - \sum_k \sum_{(i,j)} \ln(\text{IoU}(\hat{b}_{i,j}^k, b_{i,j}^k)) \text{ or } \mathcal{L}_{\text{gui}} = \mathcal{L}_{\text{rpn}}$$

where T is the temperature factor. O_ω denotes the overlap between the predicted box and the convolution kernel ω . \hat{o} is the maximal overlap among them.

- Multi-Granularity Alignment – Pixel-level and instance-level discriminators**

Pixel- and instance-level discriminators are used to perform pixel and instance-level alignment of feature maps respectively. (Lpix and Lins employ the same loss function)

- Category-level discriminator**

- Instance Discriminability**

$$\mathcal{L}_{\text{dis}} = - \frac{1}{|\mathcal{S}|} \sum_{(i,j) \in \mathcal{S}} \sum_{c=0}^{C-1} \hat{y}_{i,j,c}^{\text{dis}} \log(p_{i,j,c}^{\text{dis}})$$

$$p_{i,j,c}^{\text{dis}} = \frac{\exp(\hat{M}_{i,j,2c} + \hat{M}_{i,j,2c+1})}{\sum_{c=0}^{C-1} \exp(\hat{M}_{i,j,2c} + \hat{M}_{i,j,2c+1})}$$

where $\hat{M}_{i,j,2c}$ and $\hat{M}_{i,j,2c+1}$ denote the confidence of the c -th category in source and target domains respectively

- Category Consistency**

$$\mathcal{L}_{\text{sim}} = - \frac{1}{|\mathcal{S}|} \sum_{(i,j) \in \mathcal{S}} \sum_{m=0}^{2C-1} \hat{y}_{i,j,m}^{\text{sim}} \log(p_{i,j,m}^{\text{sim}})$$

$$p_{i,j,c}^{\text{dis}} = \frac{\exp(\hat{M}_{i,j,2c} + \hat{M}_{i,j,2c+1})}{\sum_{c=0}^{C-1} \exp(\hat{M}_{i,j,2c} + \hat{M}_{i,j,2c+1})}$$

Experiments

- Comparison with the state-of-the-art methods**

Cityscapes->Foggy Cityscapes

method	detector	Backbone	persion	rider	car	truck	bus	train	mbike	bicycle	mAP
SAPNet	FRCNN	VGG-16	40.8	46.7	59.8	24.3	46.8	37.5	30.4	40.7	40.9
UMT	FRCNN	VGG-16	56.5	37.3	48.6	30.4	33.0	46.7	46.8	34.1	41.7
MeGA-CDA	FRCNN	VGG-16	37.7	49.0	52.4	25.4	49.2	46.9	34.5	39.0	41.8
CDG	FRCNN	VGG-16	38.0	47.4	53.1	34.2	47.5	41.1	38.3	38.9	42.3
ours	FRCNN	VGG-16	43.9	49.6	60.6	29.6	50.7	39.0	38.3	42.8	44.3
oracle	FRCNN	VGG-16	46.5	51.3	65.2	32.6	49.9	34.2	39.6	45.8	45.6
SST-AL	FCOS	-	45.1	47.4	59.4	24.5	50.0	25.7	26.0	38.7	39.6
CFA	FCOS	VGG-16	41.9	38.7	56.7	22.6	41.5	26.8	24.6	35.5	36.0
CFA	FCOS	ResNet-101	41.5	43.6	57.1	29.4	44.9	39.7	29.0	36.1	40.2
ours	FCOS	VGG-16	45.7	47.5	60.6	31.0	52.9	44.5	29.0	38.0	43.6
ours	FCOS	ResNet-101	43.1	47.3	61.5	30.2	53.2	50.3	27.9	36.9	43.8
oracle	FCOS	VGG-16	50.1	46.4	68.0	33.7	54.5	38.7	30.7	39.7	45.2
oracle	FCOS	ResNet-101	46.6	45.4	66.1	33.6	54.1	62.9	29.0	37.1	46.9

Sim10k/KITTI->Cityscapes

method	detector	Backbone	mAP
CST	FRCNN	VGG-16	44.5/43.6
MeGA-CDA	FRCNN	VGG-16	44.8/43.0
SAPNet	FRCNN	VGG-16	44.9/43.4
CDN	FRCNN	VGG-16	49.3/44.9
ours	FRCNN	VGG-16	49.8/45.2
oracle	FRCNN	VGG-16	66.9
SST-AL	FCOS	-	51.8/45.6
CFA	FCOS	VGG-16	49.0/43.2
CFA	FCOS	ResNet-101	51.2/45.0
ours	FCOS	VGG-16	54.6/48.5
ours	FCOS	ResNet-101	54.1/46.5
oracle	FCOS	VGG-16	72.3
oracle	FCOS	ResNet-101	71.3

- The “oracle” results indicate that we remove the discriminators in our network and then train and evaluate it on the target domain.

Ablation Study

method	mAP	AP _S	AP _M	AP _L
CFA	36.0	8.3	36.7	61.6
ours(w/o all)	36.8	7.2	37.7	64.1
ours(w/o category-level dis.)	39.3	8.7	40.5	64.4
ours(w/o gated fusion)	41.3	8.5	39.1	70.6
ours(w/ all)	43.6	10.1	43.1	72.5
ours(w/ average fusion)	42.1	11.5	40.7	68.9
ours(w/ conv fusion)	41.5	11.2	40.1	71.5
ours(w/ gated fusion)	43.6	10.1	43.1	72.5
discriminator	baseline	D _{gen}	D _{grp}	D _{cls}
mAP	39.3	40.5	40.7	41.1
D _{cat(ours)}				43.6

- The proposed omni-scale gated fusion and category-level discriminator reduce false positives and negatives for object detection in adaptive domains.

Visualization

PASCAL VOC

->Clipart

PASCAL VOC

->Watercolor

PASCAL VOC

->Cartoon

PASCAL VOC

->3D

PASCAL VOC