中国科学院软件研究所学术年会'2022 暨计算机科学国家重点实验室开放周

自适应多粒度对齐的目标检测方法

Multi-Granularity Alignment Domain Adaptation for Object Detection Wenzhang Zhou¹ Libo Zhang^{1,2*}, Tiejian Luo¹, Yanjun Wu², ¹UCAS ²ISCAS

CVPR 2022, 张立波 18655882017

Introduction

- **Task:** Unsupervised adaptive detection is to improve the performance of detector learned from labeled source domain on new environments without labeled training data. •
- **Solution**: the domain discriminator identifies whether the image is from source domain or target domain; while the object detector learns domain-invariant features to confuse the

Experiments

Comparison with the state-of-theart methods

Cityscapes-> Foggy Cityscapes

			-								
method	detector	Backbon e	persion	rider	car	truck	bus	train	mbike	bicycle	mAP
SAPNet	FRCNN	VGG-16	40.8	46.7	59.8	24.3	46.8	37.5	30.4	40.7	40.9
UMT	FRCNN	VGG-16	56.5	37.3	48.6	30.4	33.0	46.7	46.8	34.1	41.7

discriminator.

Cityscapes->Cityscapes mAP: 34.7%

Cityscapes->Foggy Cityscapes mAP: 18.8%

Challenges: discrepancies in different scenes

Motivation

• **Discriminative representation:** The omni-scale gated fusion module can extract a discriminative representation in terms of objects with different scales and aspect ratios.

 Distribution alignment: The proposed category-level discriminator is to align the feature distribution based on instance discriminability in different categories and category consistency between source domain and target domain.

- i -		
		Δ 4
	1	∧
		_

MeGA- CDA	FRCNN	VGG-16	37.7	49.0	52.4	25.4	49.2	46.9	34.5	39.0	41.8
CDG	FRCNN	VGG-16	38.0	47.4	53.1	34.2	47.5	41.1	38.3	38.9	42.3
ours	FRCNN	VGG-16	43.9	49.6	60.6	29.6	50.7	39.0	38.3	42.8	44.3
oracle	FRCNN	VGG-16	46.5	51.3	65.2	32.6	49.9	34.2	39.6	45.8	45.6
SST-AL	FCOS	-	45.1	47.4	59.4	24.5	50.0	25.7	26.0	38.7	39.6
CFA	FCOS	VGG-16	41.9	38.7	56.7	22.6	41.5	26.8	24.6	35.5	36.0
CFA	FCOS	ResNet- 101	41.5	43.6	57.1	29.4	44.9	39.7	29.0	36.1	40.2
ours	FCOS	VGG-16	45.7	47.5	60.6	31.0	52.9	44.5	29.0	38.0	43.6
ours	FCOS	ResNet- 101	43.1	47.3	61.5	30.2	53.2	50.3	27.9	36.9	43.8
oracle	FCOS	VGG-16	50.1	46.4	68.0	33.7	54.5	38.7	30.7	39.7	45.2
oracle	FCOS	ResNet-	46.6	45.4	66.1	33.6	54.1	62.9	29.0	37.1	46.9

Sim10k/KITTI->Cityscapes

	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
method	detector	Backbone	mAP		
CST	FRCNN	VGG-16	44.5/43.6		
MeGA-CDA	FRCNN	VGG-16	44.8/43.0		
SAPNet	FRCNN	VGG-16	44.9/43.4		
CDN	FRCNN	VGG-16	49.3/44.9		
ours	FRCNN	VGG-16	49.8/45.2		
oracle	FRCNN	VGG-16	66.9		
SST-AL	FCOS	-	51.8/45.6		
CFA	FCOS	VGG-16	49.0/43.2		
CFA	FCOS	ResNet-101	51.2/45.0		
ours	FCOS	VGG-16	54.6/48.5		
ours	FCOS	ResNet-101	54.1/46.5		
oracle	FCOS	VGG-16	72.3		
oracle	FCOS	ResNet-101	71.3		

The "oracle" results indicate that we remove the discriminators in our network and then train and evaluate it on the target domain.

Ablation Study

m	ethod	mAP	APS	APM	APL	
	CFA	36.0	8.3	36.7	61.6	
ours	(w/o all)	36.8	7.2	37.7	64.1	
ours(w/o cate	egory-level dis.	39.3	8.7	40.5	64.4	
ours(w/o	gated fusion)	41.3	8.5	39.1	70.6	
ours	s(w/ all)	43.6	10.1	43.1	72.5	
ours(w/ av	verage fusion)	42.1	11.5	40.7	68.9	
ours(w/	conv fusion)	41.5	11.2	40.1	71.5	
ours(w/ g	ated fusion)	43.6	10.1	43.1	72.5	
discriminator	discriminator baseline D ^{cen}				Dca	^{at} (ours)
mAP	39.3	40.7	41.1		43.6	

Our Approach

• Our framework to encode multi-level dependencies

Omni-scale Gated Fusion

For fcos framework, a series of convolutional layers and IoU is used as the coarse detectorand loss function, repsectively. To extend our framework to Faster-RCNN, we replace them with RPN and the original RPN loss.

• Architecture of our domain adaptive object detection

Multi-Granularity Alignment Pixel-level and instance-level discriminators

Pixel- and instance-level discriminator s are used to perform pixel and instan ce-level alignment of feature maps respectively. (Lpix and Lins employ the same loss function)

The proposed omni-scale gated fusion and category-level discriminator reduce false positives and negatives for object detection in adaptive domains.

Visualization

PASCAL VOC ->Clipart

PASCAL VOC

->Watercolor

 $\mathcal{L}_{gui} = -\sum_{k} \sum_{(i,j)} \ln(\operatorname{IoU}(\tilde{b}_{i,j}^{k}, b_{i,j}^{k})) \text{ or } \mathcal{L}_{gui} = \mathcal{L}_{rpn}$

where τ is the tempercature factor. O_{ω} denotes the overlap between the predicted box and the convolution kernel $\omega.\hat{o}$ is the maximal overlap among them.

Category-level discriminator

✓ Instance Discriminability

$$\mathcal{L}_{\rm dis} = -\frac{1}{|\mathcal{S}|} \sum_{(i,j)\in\mathcal{S}} \sum_{c=0}^{C-1} \hat{y}_{i,j,c}^{\rm dis} \log(p_{i,j,c}^{\rm dis})$$
$$p_{i,j,c}^{\rm dis} = \frac{\exp(\hat{M}_{i,j,2c} + \hat{M}_{i,j,2c+1})}{\sum_{c=0}^{C-1} \exp(\hat{M}_{i,j,2c} + \hat{M}_{i,j,2c+1})}$$

where $\hat{M}_{i,j,2c}$ and $\hat{M}_{i,j,2c+1}$ denote the confidence of the c-th category in source and target domains respectively

Category Consistency

 $\mathcal{L}_{\text{sim}} = -\frac{1}{|\mathcal{S}|} \sum_{(i,j)\in\mathcal{S}} \sum_{m=0}^{2C-1} \hat{y}_{i,j,m}^{\text{sim}} \log(p_{i,j,m}^{\text{sim}})$

Conclusion

Contribution

- Multi-granularity alignment framework
- Omni-scale gated fusion

<<<<**<**<<<<

Novel category-level discriminator

• Summary

- Applicability of the multi-granularity alignment framework on different detectors
- Effectiveness of our framework on different domain adaption scenes

