\ . o £ e £ oo b 2 S Te X
— ’g ’_AS PERZEAFHRIENRES 204 4

) Bt EH LA F B RS = K5 R FSE

T ==

LPW: An Efficient Data-Aware Cache Replacement
Strategy for Apache Spark

LPW: —7Fii [Spark i & S A7 2 A0 A0 SRS

Hui Li, Shuping Ji, Hua Zhong, Wel Wang, Lijie Xu,
Zhen Tang, Jun Wel, Tao Huang

SCIENCE CHINA Information Sciences (SCIS 2022)
DOI:10.1007/s11432-021-3406-5
PR A 2E (15210848139, lihui2012@otcaix.iscas.ac.cn)

Background & Motivation

Spark users usually try to cache data in memory N "
for re-use to speed up application execution. In real- | - M " - Iﬂ'
world, since the storage memory is often notenough =" - VN T 0 7
to cache all intermediate computing results, frequent T T T T e it s
cache replacement may happen according to LRU. - - N

I —freeMem (MB) * blockSize (KB —freeMem (MB) + blockSize (KB — freeMem (MB) + blockSize (KB
3000 4 2500 2500 4

5.0 20.0 -
5.00x107
2.5
14.5
2.50+1 2.50=107
0.0 4
2500 1 2000 - 2000 - 00] —M —
T T T 1 T T T T I} l}{l T T T T T T T T
0 4000 8000 12000 16000 0 3500 7000 10500 14000 0 3500 T000 10500 14000
2000 - |
1500 4 1500
1500 -
L
M 1000 - 1000 -
1000 - I 1
[]
500 1 500 -

S 1 "H 'l\ | H ‘ il ® Diversity of applications characteristics.
' 0 TTTLOI LID I 3I0 4;”215; s. ﬁllz | TTO T‘;IOITTTQT(IT :(I]U ’ OT m.j) . QIOT 30 T TJEIT' _LL:&)TS Tﬁl{) TT ?LT T EIDT }Q‘IDTTTED ’ 0 ”TIIO 2|0 TS'D ‘410”“”;;5 TELUT TT?ID ZID IT TETETO'L .1T(|)0 . Va ri a bi I ity Of m e m O ry reSO u rce req u i re m e nt|
® Uncertainty of cache API usage.

SVM

500

LPW establishes a weight model based on factors to achieve effective use of cached data.

[— T —

We take comprehensive consideration of A new block P, that belongs to RDD; need to
different factors affecting performance, such as be cached. LPW dynamically check the weight of
partition size, computation cost and reference partitions and make reasonable replacement

replaced - Algorithm 1 lpwRep(cached Parts, partition, freeMem)
. L. Ri{ P41, P12,---P1m}
. P e 1T vt o 11 P11, P12,
1: if partition € cachedParts then e EEEE% Ifﬂ,__l_apz}n}
. J 1. ~y ‘ 141 i My T i2y---T s
2. return cachedParts|partition] I_PW R (Pr PP}
3: break — 1np |
- nse i
1: end if u
5. weight < Compute(partition) No @ Yes
6: if freeMem < I.;artli,l-f;-n.ﬁl;?n then b= Minimum{ WeightP))___(Sowsomp) =0] Ri{Pr Py Pr
7. pQueue < SortByWeight(cachedParts) & Weight(Py,) # 0 & q # &q=i Cachegzﬁzhgﬂv-fz;}
" i /] il W i2y---Ts
g: end if No i Yes] Ri { P, Pp,---Pit, P }
. - : nough memory’ Evict P,
9: while freeMem < partition.size do No — ,
Update Weight(P;
10: currPart < pQueue.pop() o Ri{Prr. Pryr..Pr } [Update weightp, |
11: freeMem + = currPart.size <Weight(P-P;) = 0 Cache Rz{ Par. Pa..--Pan
. ! Ri { Pit, -..Piw.1,Pj+1,Pis}
J.E: Elld Whlle Discard cache ij Bﬁ { Pﬂl Pﬁ""‘Eﬁ P.Fk}
13: cachedParts.add(partition) Recover Weight(P) (" Update Weight(P,))
14: freeMem - = partition.size T |
15: pWeight.add(partition) [End |

T —
AN S

We select workloads having cache APl in
HiBenchl'l LPW can speed up the execution of
applications compared to LRU and LRC. Also,
LPW could find hot data to keep in memory
without causing frequent replacement.

® \Ve deeply analyze multiple factors of cached
partitions that affect application performance.

® \We build a weight model to comprehensively
evaluate the necessity based on various

LPW factors to achieve efficient use of cached data.
Node_1 1376 1227 11585
Node 2 1391 1346 1376
Node 3 1191 1145 1124
Total 3958 A7T18 3685

® \We implement the cache replacement

21000 T (RUL JircETiPw EJirUL_JiRcL_IiPW i

| " strategy LPW. Our comprehensive
%150{}[}_ E H _____ gzﬁm_ | experiments ShOW the effectiveness Of LPW
| E : especially for iterative applications.

n
6000

At TN |] e e e—
o B« 5T | [- S fmnasncmnasssnsnansanass) = g
o z H 5 ® 1500 4 a

i ’ | i

i o
H o
3000 Eg@=g jo

0

JA .
[E—

Gl | -
L,. O)"‘?I\

P il
74 \ g

	幻灯片编号 1

