

基于对比多兴趣的短视频推荐模型

李贝贝 金蓓弘 宋嘉庚 郁乙嵩 郑益源

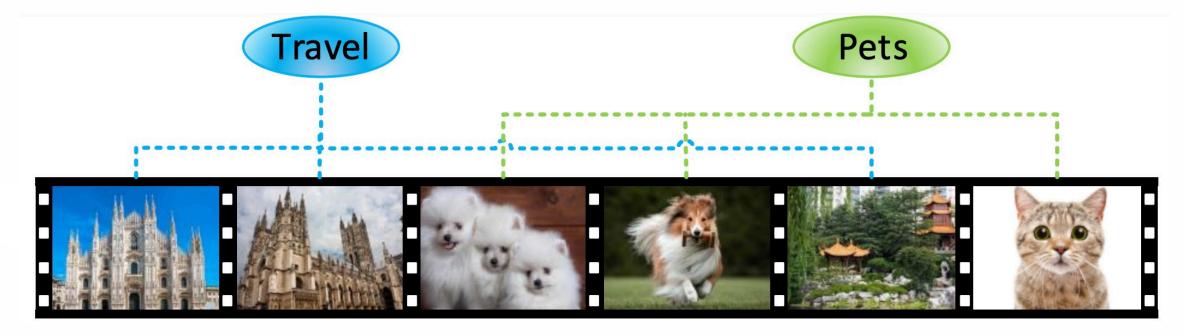
Improving Micro-video Recommendation via Contrastive Multiple Interests

SIGIR 2022 (CCFA, COREA*)

联系方式: 金蓓弘 beihong@iscas.ac.cn

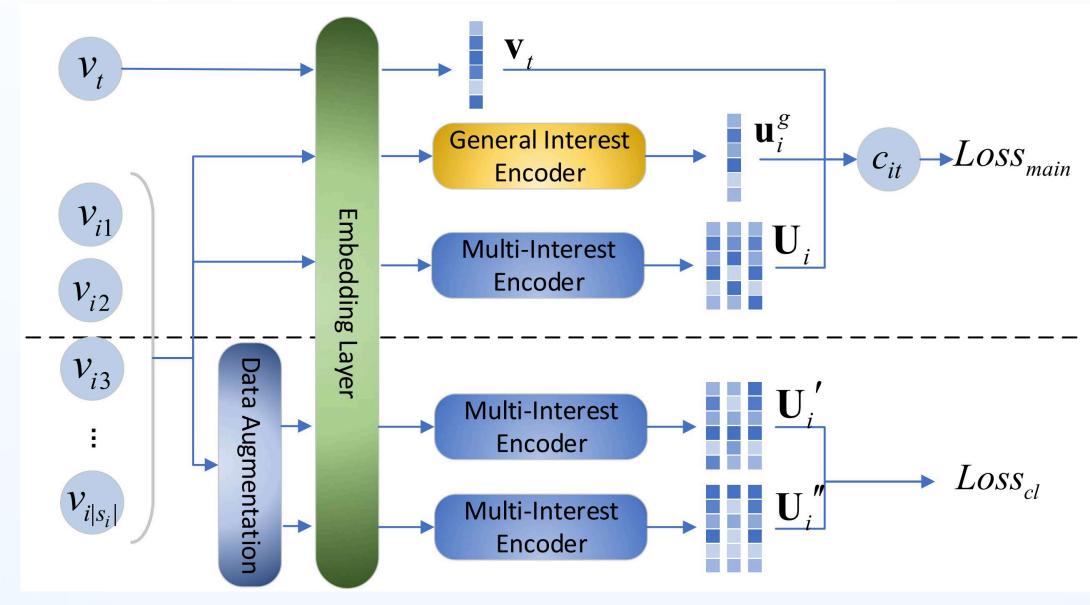
Motivation

- Existing micro-video recommendation models rely on multi-modal information processing, which is too expensive to deal with large-scale micro-videos. Furthermore, they learn a single interest embedding for a user from his/her interaction sequence.
- ☐ There is much noise in positive interactions in micro-video scenarios. However, neither existing micro-video recommendation models nor multi-interest recommendation models utilize contrastive learning to reduce the impact of noise in the positive interactions.



Model

- ☐ We propose CMI, a micro-video recommendation model, to explore the feasibility of combining contrastive learning with the multi-interest recommendation.
- We establish a multi-interest encoder based on implicit categories of items, and propose a contrastive multi-interest loss to minimize the difference between interests extracting from two augmented views of the same interaction sequence.
- ☐ We conduct experiments on two micro-video datasets and the experiment results show the rationality and effectiveness of the model.



Contrastive Regularization

Employ random sampling for data augmentation

$$U'_{i}$$
 = Multi-Interest-Encoder (s'_{i})
 U''_{i} = Multi-Interest-Encoder (s''_{i})

$$\mathcal{L}_{cl}\left(\mathbf{u}_{i}^{k\prime},\mathbf{u}_{i}^{k\prime\prime}\right) = -\log\frac{e^{\operatorname{sim}\left(\mathbf{u}_{i}^{k\prime},\mathbf{u}_{i}^{k\prime\prime}\right)}}{e^{\operatorname{sim}\left(\mathbf{u}_{i}^{k\prime},\mathbf{u}_{i}^{k\prime\prime}\right)} + \sum_{\mathbf{s}^{-} \in \mathcal{S}^{-}} e^{\operatorname{sim}\left(\mathbf{u}_{i}^{k\prime},\mathbf{s}^{-}\right)}}$$
$$-\log\frac{e^{\operatorname{sim}\left(\mathbf{u}_{i}^{k\prime},\mathbf{u}_{i}^{k\prime\prime}\right)}}{e^{\operatorname{sim}\left(\mathbf{u}_{i}^{k\prime},\mathbf{u}_{i}^{k\prime\prime}\right)} + \sum_{\mathbf{s}^{-} \in \mathcal{S}^{-}} e^{\operatorname{sim}\left(\mathbf{u}_{i}^{k\prime\prime},\mathbf{s}^{-}\right)}}$$

Interest Generation

- 1. Multiple Interests
 - Assume there are m global categories and set learnable implicit embeddings $[g_1, g_2, ..., g_m]$ for these m categories.
 - Category Assignment

$$p_{ik}^{l} = \frac{\exp\left(w_{ik}^{l}/\epsilon\right)}{\sum_{l=1}^{m} \exp\left(w_{ik}^{l}/\epsilon\right)}$$

- Interest Generation $\mathbf{u}_i^l = \sum_{k=1}^{|s_i|} p_{ik}^l \mathbf{v}_{ik}$
- ✓ Orthogonality Loss $\mathcal{L}_{orth} = \sum_{i=1}^{m} \sum_{j=1, j\neq i}^{m} (\mathbf{g}_{i}^{T}\mathbf{g}_{j})^{2}$
- 2. General Interest

$$\mathbf{u}_{i}^{g} = GRU\left(\left[\mathbf{v}_{i1}, \mathbf{v}_{i2}, \dots, \mathbf{v}_{i|s_{i}|}\right]\right)$$

Experimental Evaluation

■ Performance Comparison

Table 1: Recommendation accuracy on two datasets. #I. denotes the number of interests. The number in a bold type is the best performance in each column. The underlined number is the second best in each column.

	WeChat						TakaTak							
		Recall			HitRate					Recall		HitRate		
	#I.	@10	@20	@50	@10	@20	@50	#I.	@10	@20	@50	@10	@20	@50
Octopus	1	0.0057	0.0125	0.0400	0.0442	0.0917	0.2332	1	0.0076	0.0160	0.0447	0.1457	0.2533	0.4393
MIND	1	0.0296	0.0521	0.1025	0.1774	0.2791	0.4514	1	0.0222	0.0389	0.0773	0.2139	0.3263	0.4977
ComiRec-DR	1	0.0292	0.0525	0.1049	0.1790	0.2893	0.4621	1	0.0226	0.0392	0.0769	0.2345	0.3427	0.5144
ComiRec-SA	1	0.0297	0.0538	0.1079	0.1806	0.2938	0.4684	1	0.0239	0.0409	0.0752	0.2567	0.3665	0.5207
DSSRec	1	0.0327	0.0578	<u>0.1161</u>	0.1971	0.3064	0.4854	8	0.0244	0.0408	0.0749	0.2558	$\underline{0.3704}$	0.5259
CMI	8	0.0424	0.0717	0.1342	0.2436	0.3612	0.5292	8	0.0210	0.0415	0.0877	0.2912	0.4172	0.5744
Improv.	/	29.66%	24.05%	15.59%	23.59%	17.89%	9.02%	/	/	1.72%	17.09%	13.84%	12.63%	9.22%

CMI outperforms other multi-interest competitors on most metrics, which demonstrates that CMI generates recommendations with both high accuracy and excellent coverage

Ablation Study

Both contrastive regularization and the general interest make contributions to performance.

Table 3: Ablation study on WeChat. The values in parentheses are the percentages of decline relative to the original model.

		CMI-CL	CMI-G	CMI
	@10	0.039(-8.02%)	0.0342(-19.34%)	0.0424
Recall	@20		0.0589(-17.85%)	0.0717
	@50	0.1285(-4.25%)	0.1165(-13.19%)	0.1342
	@10	0.2286(-6.16%)	0.2061(-15.39%)	0.2436
HitRate	@20	0.3443(-4.68%)	0.3181(-11.93%)	0.3612
	@50	0.5188(-1.93%)	0.4935(-6.71%)	0.5290

Table 4: The effect of the number of interests on WeChat.

	#I.	1	2	4	8	16
	@10	0.0303	0.0404	0.0409	0.0428	0.0412
Recall	@20	0.0530	0.0699	0.0694	0.0718	0.0700
Recall	@50	0.1039	0.1343	0.1333	0.1364	0.1314
	@10	0.1969	0.2383	0.2384	0.2458 0.3587 0.5322	0.2390
HitRate	@20	0.3012	0.3547	0.3516	0.3587	0.3557
	@50	0.4646	0.5330	0.5271	0.5322	0.5238