しました。中国科学院软件研究所学术年会'2022 暨计算机科学国家重点实验室开放周

Fed-EINI: An Efficient and Interpretable Inference Framework for Decision Tree Ensembles in Federated Learning 一种高效可解释的联邦集成树推理框架

Xiaolin Chen; Shuai Zhou; Bei Guan; Kai Yang; Yongji Wang 2021 IEEE International Conference on Big Data (Big Data)

Reasons for disclosing the meanings of features:

- judge the reasonability of Federated AI models.
- prove the compliance of models to business regulators [1]
- □ Challenges: disclosing the meanings of features, data breaches, efficiency
- Solution: additively homomorphic encryption, confusion items, hidden secure decision paths

Fed-EINI : A Two-Stage Inference Algorithm

Key Observation: The prediction result of a treecan be expressed as the intersection of results of thesub-models held by all parties.M

$$f_k(\mathbf{x}) = w_{(j,k)}, where \ j \in \bigcap_{\{m=1\}} f_k^m(\mathbf{x}^m)$$

Fed-EINI: compute the candidate sets of each party

Given Stage1: Parallel Calculation:

• Each participant generates candidate sets of leaf nodes.

□ Stage 2: Synchronization

- Guest: encrypts and send all decision vectors to Host
- Host: merges decision vectors and takes the sum of

```
them

Algorithm 1 Fed-EINI: an efficient and interpretable infer-

ence framework.

Input :x^{\text{Guest}}, x^{\text{Host}}, \{f_k^{\text{Guest}}\}_{k=1}^K, \{f_k^{\text{Host}}\}_{k=1}^K

Output :Y

Set [q] = 0, [S_k] = 0

for k = 1, \dots, K do

Stage 1: Parallel Calculation

Guest&Host:Load parameters of f_k^{\text{Guest}} or f_k^{\text{Host}};

Guest&Host:Load parameters of f_k^{\text{Guest}} or M_k^{\text{Host}} for x^{\text{Guest}}

or x^{\text{Host}} during tree search according to equation(8)(9);
```

 $f_k^m(x^m)$ locally, and securely compute the inference results

Stage 2: Synchronization Guest: Encrypt and push $[\![\mathbf{W}_k^{\mathsf{Guest}}]\!]$ to Host; Host: Pull $[\![\mathbf{W}_{k-1}]\!]$ from Guest; Host: $[\![S_k]\!] = \langle \mathbf{1}, [\![\mathbf{W}_k^{\mathsf{Guest}}]\!] \circ \mathbf{W}_k^{\mathsf{Host}} \rangle$; end Host: Push value $[\![\hat{y}]\!] = \sum_{k=1}^{K} [\![S_k]\!]$ to Guest; Guest: Decrypt and get the prediction \hat{y} ;

$$\llbracket \hat{y} \rrbracket = \sum_{k=1}^{K} \llbracket S_k \rrbracket = \sum_{k=1}^{K} \langle \mathbf{1}, \llbracket W_k^{Guest} \rrbracket \circ \llbracket W_k^{Host} \rrbracket \rangle$$

Analysis

Given Security & Interpretability :

- disclose the meaning of features while hidden decision path
- achieve the same security as existing framework with semi-honest assumption.

		Secur	eBoost	Fed-EINI		
		Guest	Host	Guest	Host	
Model Information	Model structure Weights of leaf nodes Model parameters Splitting rules	√ √ Local nodes	\checkmark \checkmark Local nodes	√ √ Local nodes	\checkmark \checkmark Local Nodes	
Data Information	Local data Number of features Meaning of features Decision path	√ √ Local features Complete Decision path	√ ↓ Local features Decision path based on local nodes	All features Decision path based on local nodes	√ ↓ Local features Decision path based on local nodes	

Simulation

D Efficiency:

- Parallel Inference: each party generates all the candidates in parallel based on its local splitting condition and local data
- One-Round Communication: The inference of each tree only needs to communicate once at last layer.
 Accuracy Metrics:

• Conduct numerical experiments with the proposed Fed-EINI and the multi-interactive framework (SecureBoost[2] as representative).

7**111111111111**11

		SecureBoost		Fed-EINI	
	Sampling Rate	AUC	KS	AUC	KS
	20%	0.880	60.3	0.880	60.3
Credit1	80%	0.853	55.0	0.853	55.0
	100%	0.855	54.9	0.855	54.9
	20%	0.773	43.0	0.773	43.0
Credit2	80%	0.771	41.0	0.771	41.0
	100%	0.771	40.9	0.771	40.9
	20%	0.636	19.9	0.636	19.9
JDT	80%	0.639	19.8	0.639	19.8
	100%	0.638	19.7	0.638	19.7

D Efficiency Metrics :

Conclusions

- disclose the meaning of features while hidden decision path
- achieve the same security as existing framework with semi-honest assumption
- □ accuracy and efficiency of Fed-EINI

References

- [1]The People's Bank of China. Evaluation specification of artificial intelligence algorithm in financial application. Financial Industry Standard, Beijing, China, 2021.
- [2] Cheng, K., Fan, T., Jin, Y., Liu, Y., Chen, T., and Yang, Q. SecureBoost: A lossless federated learning framework. arXiv preprint arXiv:1901.08755, 2019.

Authors

- Xiaolin Chen: chenxiaolin18@mails.ucas.ac.cn
- Yongji Wang: ywang@itechs.iscas.ac.cn