

MetAug: Contrastive Learning via Meta Feature Augmentation

Jiangmeng Li*, Wenwen Qiang*, Changwen Zheng, Bing Su, Hui Xiong

Proceedings of the 39th International Conference on Machine Learning, in Proceedings of Machine Learning Research 162:12964-12978

李江梦(15633670625, jiangmeng2019@iscas.ac.cn)

Contrastive Learning Preliminaries

Contrastive loss formulation

$$\mathcal{L} = -\mathbb{E}_{X_S} \left[\log \frac{d(\{z^+\})}{d(\{z^+\}) + \sum_{k=1}^{K} d(\{z^-\}_k)} \right]$$

- X_S : a set of pairs randomly sampled from X
- $\{z^+\}$: a positive pair $\{z^+\}_k$: K negative pairs, $k \in \{1,...,K\}$
- d(.): a discriminating function
- > The contrastive loss guides the learned features to bring positive pairs together and push negative pairs farther apart.

Motivation

- Contrastive learning heavily relies on informative features, or "hard" (positive or negative) features
 - Early works include informative features by applying complex data augmentations or adopting large batch size or memory bank
 - Recent works design elaborate sampling approaches to explore informative features
- Learning anti-collapsed feature augmentation

To this end, we propose to directly augment the features in latent space by using the anti-colapsed feature augmentation, thereby learning discriminative representations without a large amount of input data.

Margin-Injected Meta Feature Augmentation

- Meta feature augmentation generator (MAG)
 - Leverages second-derivative technique to update the parameters with respect to the improvement of the contrastive learning
- Margin-injected regularization
 - Injects a margin to encourage MAGs to generate anti-collapsed augmented features

Optimization-Driven Unified Contrast

- Jointly contrasts all features in one gradient back-propagation step
- **Emphasizes the weight to the similarity that** deviates from the optimum and decrases the weight to the similarity having close proximity with the optimum

$$\mathcal{L}_{OUCL} = \frac{1}{\beta} log \left\{ 1 + \sum_{k^-=1}^{K^-} \sum_{k^+=1}^{K^+} exp \left[\beta \left(\left(d(\{z^+\}_{k^+}) - 1 \right)^2 + \left(d(\{z^-\}_{k^-}) \right)^2 - 2\gamma^2 \right) \right] \right\}$$

Experimental Results

Comparison with self-supervised learning methods

_	Model	Tiny ImageNet		STL-10		CIFAR10		CIFAR100	
1	riodei	conv	fc	conv	fc	conv	fc	conv	fc
F	fully supervised	36.60		68.70		75.39		42.27	
E	BiGAN	24.38	20.21	71.53	67.18	62.57	62.74	37.59	33.34
N	NAT	13.70	11.62	64.32	61.43	56.19	51.29	29.18	24.57
Γ	OIM	33.54	36.88	72.86	70.85	73.25	73.62	48.13	45.92
S	plitBrain [‡]	32.95	33.24	71.55	63.05	77.56	76.80	51.74	47.02
S	SwAV	39.56 ± 0.2	38.87 ± 0.3	70.32 ± 0.4	71.40 ± 0.3	68.32 ± 0.2	65.20 ± 0.3	44.37 ± 0.3	40.85 ± 0.3
S	SimCLR	36.24 ± 0.2	39.83 ± 0.1	75.57 ± 0.3	77.15 ± 0.3	80.58 ± 0.2	80.07 ± 0.2	50.03 ± 0.2	49.82 ± 0.3
C	CMC^{\ddagger}	41.58 ± 0.1	40.11 ± 0.2	83.03	85.06	81.31 ± 0.2	83.28 ± 0.2	$ 58.13 \pm 0.2 $	56.72 ± 0.3
N	ЛоСо	35.90 ± 0.2	41.37 ± 0.2	77.50 ± 0.2	79.73 ± 0.3	76.37 ± 0.3	79.30 ± 0.2	51.04 ± 0.2	52.31 ± 0.2
E	BYOL	41.59 ± 0.2	41.90 ± 0.1	81.73 ± 0.3	81.57 ± 0.2	77.18 ± 0.2	80.01 ± 0.2	53.64 ± 0.2	53.78 ± 0.2
E	Barlow Twins	39.81 ± 0.3	40.34 ± 0.2	80.97 ± 0.3	81.43 ± 0.3	76.63 ± 0.3	78.49 ± 0.2	52.80 ± 0.2	52.95 ± 0.2
Γ	DACL	40.61 ± 0.2	41.26 ± 0.1	80.34 ± 0.2	80.01 ± 0.3	81.92 ± 0.2	80.87 ± 0.2	52.66 ± 0.2	52.08 ± 0.3
L	.ooC	42.04 ± 0.1	41.93 ± 0.2	81.92 ± 0.2	82.60 ± 0.2	83.79 ± 0.2	82.05 ± 0.2	54.25 ± 0.2	54.09 ± 0.2
S	SimCLR + Debiased	38.79 ± 0.2	40.26 ± 0.2	77.09 ± 0.3	78.39 ± 0.2	80.89 ± 0.2	80.93 ± 0.2	51.38 ± 0.2	51.09 ± 0.2
S	SimCLR + Hard	40.05 ± 0.3	41.23 ± 0.2	79.86 ± 0.2	80.20 ± 0.2	82.13 ± 0.2	82.76 ± 0.1	52.69 ± 0.2	53.13 ± 0.2
C	CMC [‡] + Debiased	41.64 ± 0.2	41.36 ± 0.1	83.79 ± 0.3	84.20 ± 0.2	82.17 ± 0.2	83.72 ± 0.2	$ 58.48 \pm 0.2 $	57.16 ± 0.2
C	CMC [‡] + Hard	42.89 ± 0.2	42.01 ± 0.2	83.16 ± 0.3	85.15 ± 0.2	83.04 ± 0.2	86.22 ± 0.2	$ 58.97 \pm 0.3 $	59.13 ± 0.2
N	MetAug (only OUCL) [‡]	42.02 ± 0.1	42.14 ± 0.2	84.09 ± 0.2	84.72 ± 0.3	85.98 ± 0.2	87.13 ± 0.2	59.21 ± 0.2	58.73 ± 0.2
N	/letAug [‡]	$ $ 44.51 \pm 0.2	45.36 ± 0.2	85.41 ± 0.3	85.62 ± 0.2	$ \textbf{87.87} \pm \textbf{0.2} $	88.12 ± 0.2	$ $ 59.97 \pm 0.3	$\textbf{61.06} \pm \textbf{0.2}$

Comparison under multiple batch sizes

Comparisons with different data augmentations

L	set.			Data augme	ntations				Methods	
	ID	horizontal	rotate	random	random	color	mixup	DACL	LooC	MetAug
		flip		crop	grey	jitter				
	1	✓	✓					-	80.73	87.05
	2			✓				-	81.16	87.53
	3				✓			-	80.70	86.81
	4					✓		-	81.64	87.79
	5	✓		✓				-	82.05	88.12
	6		✓			✓		-	82.16	88.01
	7	✓		✓			✓	80.87	82.21	88.22
	8	✓	✓	✓	✓	✓	✓	82.09	83.17	88.65

<<<<**<**<<<<