

可重光照的参与介质神经渲染

Quan Zheng, Gurprit Singh, Hans-Peter Seidel

Title: Neural Relightable Participating Media Rendering

Venue: Thirty-fifth Conference on Neural Information Processing

Systems (NeurIPS 2021), 34, 15203-15215

Contact: 郑权, zhengquan@iscas.ac.cn

Background & Overview

- Participating media are media whose particles participate in the light transport when light enters the media.
- Previous acquisition methods require sophisticated apparatus and carefully designed lighting conditions, which makes the capture cumbersome.

Typical participating media

- We propose a method for participating media acquisition.
- This method can learn disentangled density and scattering albedo, and allows decomposition of direct and indirect lighting in unsupervised manner.

Method

 Cope with holistic illumination by simulating single scattering and multiple scattering

> Single Scattering

- Compute with exact ray tracing
- Predict visibility for shadow rays

$$L_{s} = \int_{\Omega_{4\pi}} a(x_{t}) \cdot \rho(\omega_{o}, \omega_{i}) \cdot L_{e}(x_{t}, \omega_{i}) \cdot V(x_{t}, \omega_{i}) d\omega_{i}$$

> Multiple Scattering

- Aggregate incident radiance of rays that have been scattered at least once
- Approximate radiance with spherical harmonics expansion

> Difference in Properties

	Solid scenes	Participating media
Radiance	✓ Color c	✓ Single scattering $L_{\rm s}$ ✓ Multiple scattering $L_{\rm m}$
Property		 ✓ Volume density σ ✓ Scattering albedo a ✓ Phase function parameter g

> Framework

Results

Qualitative comparison on test view

Quantitative comparison

	Cow			Cloud			Buddha3		
Method	PSNR	SSIM	ELPIPS	PSNR	SSIM	ELPIPS	PSNR	SSIM	ELPIPS
Bi et al.	24.70	0.958	0.465	20.92	0.921	0.783	29.47	0.970	0.299
NeRV	25.20	0.960	0.540	25.68	0.949	0.526	28.69	0.969	0.315
Ours	34.20	0.983	0.184	33.51	0.974	0.302	33.77	0.975	0.245

Enable scene compositions • Enable flexible scene editing

Our composition Ground truth Learnt cloud Edit density